1. Increasing and Decreasing Functions

Definition A function f is (strictly) **increasing** on an interval I if for every x_1, x_2 in I with $x_1 < x_2$,
$$f(x_1) < f(x_2).$$

A function f is (strictly) **decreasing** on an interval I if for every x_1, x_2 in I with $x_1 < x_2$,
$$f(x_2) < f(x_1).$$

Example The graph of f is given below. Determine graphically the interval on which f is increasing.

![Graph of f](image)

$f(x)$ is increasing on $(0, 0.8), (1.5, 4)$

How can we determine algebraically where f is increasing and where f is decreasing? **Observe that** the graph of f has positive slope on the intervals: $(0, 0.8), (1.5, 4)$.

Theorem Suppose that f is differentiable on an interval I.

a. If $f'(x) > 0$ for all x in I, then f is increasing on I.

b. If $f'(x) < 0$ for all x in I, then f is decreasing on I.

The proof is directly from the Mean Value Theorem. Let x_1 and x_2 be in I and $x_1 < x_2$. Then by the Mean Value Theorem, we know there exists a value c in (x_1, x_2) such that
$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

If $f'(c) > 0$, then $\frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$ that implies $f(x_2) - f(x_1) > 0$ because $x_2 > x_1$. Hence,
$$f(x_2) > f(x_1)$$

f is increasing. In a similar way, we can show b.

Example The graph of f' is given below. Determine graphically the interval on which f is increasing.
Example Find the intervals where \(f(x) = 2x^3 + 9x^2 - 24x - 10 \) is increasing and decreasing. Verify your answers by graphing both \(f \) and \(f' \).

Compute \(f' \):

\[
f'(x) = 6x^2 + 18x - 24 = 6(x^2 + 3x - 4) = 6(x + 4)(x - 1)
\]

Check signs of \(f' \):

Know \(f'(x) = 0 \) when \(x = -4 \) and \(x = 1 \).

<table>
<thead>
<tr>
<th>interval</th>
<th>(-\infty, -4)</th>
<th>(-4, 1)</th>
<th>(1, \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

So, \(f \) is increasing on \((-\infty, -4) \), \((1, \infty) \) and is decreasing on \((-4, 1) \).
Example Find the intervals where \(f(x) = \ln(x^2 - 4) \) is increasing and decreasing. Verify your answers by graphing both \(f \) and \(f' \).

Domain of \(f \): \(x^2 - 4 > 0 \), \(x^2 > 4 \), \(|x| > \sqrt{4} = 2 \), \(x > 2 \) or \(x < -2 \).

Compute \(f' \):

\[
 f'(x) = \frac{1}{x^2 - 4}(2x) = \frac{2x}{(x-2)(x+2)}
\]

Check signs of \(f' \): Know \(f'(x) = 0 \) when \(x = 0 \), and \(f' \) is not defined when \(x = 2 \) and \(x = -2 \).

Check signs of \(f' \) over intervals: \((-\infty, -2) \), \((2, \infty) \)

\[
\begin{align*}
 f'(-3) &= \frac{-6}{(-5)(-1)} < 0, \\
 f'(3) &= \frac{6}{(1)(5)} > 0
\end{align*}
\]

<table>
<thead>
<tr>
<th>interval</th>
<th>((-\infty, -2))</th>
<th>((2, \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

So, \(f \) is increasing on \((2, \infty) \) and is decreasing on \((-\infty, -2) \).

2. First Derivative Test For Local Extrema:

Theorem Suppose that \(f \) is continuous on \([a, b] \) and \(c \) in \((a, b) \) is a critical number.

a. If \(f' \) changes sign from positive to negative at \(x = c \), then \(f(c) \) is a **local maximum** of \(f \). The number \(c \) is called a **local maximum point**.

b. If \(f' \) changes sign from negative to positive at \(x = c \), then \(f(c) \) is a **local minimum** of \(f \). The number \(c \) is called a **local minimum point**.

c. If \(f' \) does not change sign at \(x = c \), then \(f(c) \) is not a local extremum.

Steps for locating the \(x \)-coordinate of a local minimum point or a local maximum point:

a. Find **all critical numbers** \(c \) of \(f \) and values \(x \) which are **not in the domain** of \(f \) but at which \(f' \) is not defined.
b. Determine the sign changes of f' over the intervals whose end points are critical numbers c and \bar{x} (except $\pm \infty$).

c. If f' changes from positive to negative at c, then $x = c$ is a local maximum point. If f' changes from negative to positive at c, then $x = c$ is a local maximum point.

Example Find the x–coordinates of all extrema of $f(x) = x^2 e^{-3x}$.

Compute f' and find all critical numbers:

$$f'(x) = 2xe^{-3x} - 3x^2e^{-3x} = xe^{-3x}(2 - 3x), \quad f'(x) = 0 \iff \begin{cases} x = 0 \\ 2 - 3x = 0, \quad x = \frac{2}{3} \end{cases}$$

f' is defined everywhere. So, there is no c at which f' is not defined.

Check the sign change of f' over intervals: $\left(-\infty, 0\right), \left(0, \frac{2}{3}\right), \left(\frac{2}{3}, \infty\right)$

$$\begin{array}{c|ccc}
\text{interval} & \left(-\infty, 0\right) & \left(0, \frac{2}{3}\right) & \left(\frac{2}{3}, \infty\right) \\
\text{sign of } f' & - & + & - \\
\end{array}$$

f' has a local maximum value at $x = \frac{2}{3}$ and a local minimum value at $x = 0$.

Example Find the x–coordinates of all extrema of $f(x) = \frac{x^2}{x^2 - 4}$.

Compute f' and find all critical numbers:

$$f'(x) = \frac{2x(x^2 - 4) - x^2(2x)}{(x^2 - 4)^2} = \frac{2x(x^2 - 4 - x^2)}{(x^2 - 4)^2} = \frac{-8x}{(x^2 - 4)^2} = 0 \iff x = 0$$

f' is not defined at $x^2 - 4 = 0$, $x = \pm 2$. However, since $(x^2 - 4)^2 > 0$ for all $x \neq \pm 2$, no sign change for the denominator of f'. So, we only need to check the sign change of the numerator of f'.

Check sign changes of f' over $\left(-\infty, 0\right), \left(0, \infty\right)$:

$f'(x) > 0$ for x in $\left(-\infty, 0\right)$ and $f'(x) < 0$ for x in $\left(0, \infty\right)$.

$x = 0$ is a local maximum point.
Example Find the x-coordinates of all extrema of \(f(x) = \sin x - x \).

Compute \(f' \) and find all critical numbers:

\[
f'(x) = \cos x - 1 = 0, \quad \text{cos} x = 1, \quad x = 0, \quad x = 2n\pi \text{ and } x = -2n\pi
\]

Critical numbers:

\[
x = 0, \quad x = \pm 2\pi, \quad x = \pm 4\pi, \ldots
\]

Check signs of \(f' \): since \(-1 \leq \cos x \leq 1, \quad -2 \leq \cos x - 1 \leq 0\). So, \(f'(x) \leq 0 \) for all \(x \) in \((-\infty, \infty)\), that is \(f' \) does not change sign at its critical numbers and these critical numbers are not local extrema.

Example Find the local extrema of \(f(x) = x^{5/3} - 3x^{2/3} \).

Domain of \(f \) : \(D_f = (-\infty, \infty) \)

Compute \(f' \) and find all critical numbers of \(f \):

\[
f'(x) = \frac{5}{3} x^{2/3} - 2x^{-1/3} = x^{-1/3}(\frac{5}{3} x - 2)
\]

\[
f'(x) = 0 \quad \text{if}
\]
\[\frac{5}{3}x - 2 = 0, \quad x = \frac{6}{5} \]

\(f'(x) \) is not defined if \(x = 0 \).

Check signs of \(f'(x) \) on the intervals: \((-\infty, 0) \), \((0, \frac{6}{5}) \), \(\left(\frac{6}{5}, \infty \right) \)

\[
f'(-1) = \frac{1}{\sqrt{(-1)}} \left(\frac{5}{3}(-1) - 2 \right) = \frac{11}{3}, \quad f'(1) = \frac{1}{\sqrt{1}} \left(\frac{5}{3} - 2 \right) = -\frac{1}{3}
\]

\[
f'(2) = \frac{1}{\sqrt{2}} \left(\frac{5}{3}(2) - 2 \right) = \frac{2}{3} 2^{\frac{3}{2}}
\]

<table>
<thead>
<tr>
<th>interval</th>
<th>((-\infty, 0))</th>
<th>((0, \frac{6}{5}))</th>
<th>(\left(\frac{6}{5}, \infty \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

So, \(f(0) \) is a local maximum, \(f\left(\frac{6}{5} \right) \) is a local minimum.

Example Sketch a graph of a function with the given properties:

\(f(0) = 1, \quad f(2) = 5 \)

\(f'(0) = 0, \quad f'(2) = 0 \)

\(f'(x) < 0, \quad \text{for } x < 0 \text{ and } x > 2; \quad f'(x) > 0 \text{ for } 0 < x < 2 \)
$f(3) = 0, \ f(0) \ does \ not \ exist$

$f'(3) = 0, \ f'(0) \ does \ not \ exist$

$f'(x) < 0, \ for \ x < 0 \ and \ x > 3; \ f'(x) > 0 \ for \ 0 < x < 3$