1.2 The Concepts of Limit

What is a limit (of a sequence of real numbers)?

Example: a sequence of numbers:

\[
\begin{align*}
\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{999}{1000}, \ldots, \frac{9999}{10000}, \ldots, \frac{99999}{100000}, \ldots
\end{align*}
\]

- Is there an end of this sequence? No.
- Can you think of a number that these terms are getting closer and closer to? Yes, the number is 1. That is,

\[
\lim_{n \to \infty} \frac{n}{n + 1} = 1 \quad (1 \text{ is not in } \left\{ \frac{n}{n + 1} \right\})
\]

or these numbers are approaching to 1 as \(n \) is getting larger and larger.

Example: a sequence of numbers:

\[
0, 1, 0, 1, 0, 1, 0, 1, \ldots
\]

- Is there an end of this sequence? No.
- Can you think of a number that these terms are getting closer and closer to? No.

The limit \(L \) of a sequence \(\{x_n\} \) is a real number approached by \(x_n \).
Example: Consider \(f(x) = \frac{x^2 - 5}{x - 2} \) and \(g(x) = \frac{x^2 - 4}{x - 2} \).

Both functions are not defined at \(x = 2 \). What can we say about \(f(x) \) and \(g(x) \) as \(x \) is getting closer and closer to 2?

- As \(x \) is getting closer to 2:
 \[
x = 1.99, 1.999, 1.9999, 1.99999, 1.999999, \ldots
 \]
 values of \(f(x) \) (y values) are:
 103.99, 1003.999, 1.0003.9999, 1000 03.99999, 1000 003.999999

 \(\lim_{x \to 2^-} f(x) = \infty \)

- As \(x \) is getting closer to 2:
 \[
x = 2.01, 2.001, 2.0001, 2.00001, 2.000001, \ldots
 \]
 values of \(f(x) \) (y values) are:
 - 95.99, -995.999, -9995.9999, -99995.99999, \ldots

 \(\lim_{x \to 2^+} f(x) = -\infty \)

But \(\lim_{x \to 2} f(x) \) does not exist.
\[g(x) = \frac{x^2 - 4}{x - 2} \]

- As \(x \) is getting closer to 2:
 \[x = 1.99, 1.999, 1.9999, 1.99999, 1.999999, \ldots \]
 values of \(g(x) \) (y values) are:
 \[3.99, 3.999, 3.9999, 3.99999, 3.999999, \ldots \]
 \[\lim_{x \to 2^-} g(x) = 4 \]

- As \(x \) is getting closer to 2:
 \[x = 2.01, 2.001, 2.0001, 2.00001, 2.000001, \ldots \]
 values of \(g(x) \) (y values) are:
 \[4.01, 4.001, 4.0001, 4.00001, 4.000001, \ldots \]
 \[\lim_{x \to 2^+} g(x) = 4 \]

So, \(\lim_{x \to 2} g(x) = 4 \).
Notations:

i. \(x \to a^- \) means \(x \) approaches \(a \) from the left side of \(a \).

ii. \(x \to a^+ \) means \(x \) approaches \(a \) from the right side of \(a \).

iii. \(\lim_{x \to a^-} f(x) \) denotes the limit of \(f(x) \) as \(x \) approaches \(a \) from the left side.

iv. \(\lim_{x \to a^+} f(x) \) denotes the limit of \(f(x) \) as \(x \) approaches \(a \) from the right side.

v. \(\lim_{x \to a} f(x) \) denotes the limit of \(f(x) \) as \(x \) approaches \(a \) from both left and right sides.

Let \(L \) be a finite number.

Definition: \(\lim_{x \to a} f(x) = L \) if and only if

\[
\lim_{x \to a^-} f(x) = L \quad \text{and} \quad \lim_{x \to a^+} f(x) = L.
\]
Compute Limits Graphically:

Example: The graph of \(f(x) \) is given below. Find limits.

\[a. \lim_{x \to 1^-} f(x) = \]
\[b. \lim_{x \to 1^+} f(x) = \]
\[c. \lim_{x \to 1} f(x) = \]
\[d. \lim_{x \to 2^-} f(x) = \]
\[e. \lim_{x \to 2^+} f(x) = \]
\[f. \lim_{x \to 2} f(x) = \]

Example: (http://curvebank.calstatela.edu/limit/limit.htm)
Compute Limits Numerically:

Example: Evaluate \(\lim_{x \to 0} \frac{\sin x}{x} \) numerically and graphically.

Numerically:

Note that \(x \) is in radians. (TI-83, TI-89: (1) change mode to radians; (2) set table/independent variable to ask instead of auto.)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\frac{\sin x}{x})</th>
<th>(x)</th>
<th>(\frac{\sin x}{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.999 983 333</td>
<td>−0.01</td>
<td>0.999 983 333</td>
</tr>
<tr>
<td>0.001</td>
<td>0.999 999 833</td>
<td>−0.001</td>
<td>0.999 999 833</td>
</tr>
<tr>
<td>0.0001</td>
<td>0.999 999 998</td>
<td>−0.0001</td>
<td>0.999 999 998</td>
</tr>
<tr>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>0⁺</td>
<td>1</td>
<td>0⁻</td>
<td>1</td>
</tr>
</tbody>
</table>

So,

\[
\lim_{x \to 0} \frac{\sin x}{x} = 1
\]
Graphically:

\[f(x) = \frac{\sin x}{x} \]

\(\lim_{x \to 0} \frac{\sin x}{x} = 1 \)

Question: Are functions \(f(x) = \frac{\sin x}{x} \) and \(g(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \) the same?
Graphically:

\[
\lim_{x \to 0} \frac{\sin x}{x} = 1
\]

\[
f(x) = \frac{\sin x}{x}
\]

Question: Are functions \(f(x) = \frac{\sin x}{x} \) and \(g(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \) the same?

Answer: No. \(f(x) \) is not defined at \(x = 0 \) but \(g(x) \) is well-defined at \(x = 0 \).
Example: Sketch the graph of \(f(x) = \begin{cases}
 x^2 & \text{if } x > 0 \\
 -2 & \text{if } x = 0 \\
 \sqrt{1-x} & \text{if } x < 0
\end{cases} \) and then find the following limits:

a. \(\lim_{x \to 0^-} f(x) \)

b. \(\lim_{x \to 0^+} f(x) \)

c. \(\lim_{x \to 0} f(x) \)
Example: Sketch the graph of

\[f(x) = \begin{cases}
 x^2 & \text{if } x > 0 \\
 -2 & \text{if } x = 0 \\
 \sqrt{1 - x} & \text{if } x < 0
\end{cases} \]

and then find the following limits:

\[a. \lim_{x \to 0^-} f(x) \quad b. \lim_{x \to 0^+} f(x) \quad c. \lim_{x \to 0} f(x) \]

Answer:

\[a. \lim_{x \to 0^-} f(x) = 1 \]

\[b. \lim_{x \to 0^+} f(x) = 0 \]

\[c. \lim_{x \to 0} f(x) \text{ DNE} \]
Example: Sketch the graph of $f(x) = \frac{|2 - x|}{x^2 - 4}$ and find the following limits:

a. $\lim_{x \to 2^-} f(x)$
b. $\lim_{x \to 2^+} f(x)$
c. $\lim_{x \to 2} f(x)$
Example: Sketch the graph of \(f(x) = \frac{|2-x|}{x^2 - 4} \) and find the following limits:

\[
\begin{align*}
\text{a. } \lim_{x \to 2^-} f(x) & \quad \text{b. } \lim_{x \to 2^+} f(x) \\
\text{c. } \lim_{x \to 2} f(x)
\end{align*}
\]

Answer:

\[
\frac{|2-x|}{x^2 - 4} = \begin{cases} \\
\frac{2-x}{(x-2)(x+2)} = \frac{-1}{x+2} & \text{if } x < 2 \\
\frac{-2-x}{(x-2)(x+2)} = \frac{1}{x+2} & \text{if } x > 2
\end{cases}
\]

The graph of \(f(x) = \frac{|2-x|}{x^2 - 4} \) is given below:
\[\lim_{x \to 2^-} \frac{|2 - x|}{x^2 - 4} = -\frac{1}{4} \]
\[\lim_{x \to 2^+} \frac{|2 - x|}{x^2 - 4} = \frac{1}{4} \]

Since \[\lim_{x \to 2^-} \frac{|2 - x|}{x^2 - 4} \neq \lim_{x \to 2^+} \frac{|2 - x|}{x^2 - 4}, \]

\[\lim_{x \to 2} \frac{|2 - x|}{x^2 - 4} \text{ DNE} \]