Mathematics Quote: \textit{For a physicist mathematics is not just a tool by means of which phenomena can be calculated, it is the main source of concepts and principles by means of which new theories can be created.}

– Freeman Dyson, Mathematics in the Physical Sciences.

1. Reading assignment for Section 1.4:
 (1) Definition 4.1-4.2.
 (2) Definition for a removable discontinuous point on Page 99 (right above Example 4.3).
 (3) Theorem 4.1-4.3.
 (4) Examples from the lecture notes.
 (5) Examples 4.4 and 4.6.

2. State the definition of a removable discontinuous point \(x = a \) of \(f(x) \).

3. The graph of \(f(x) \) is given below.

4. Consider the function \(f(x) \) whose graph is given in Problem 6 on Page 107. We know that \(f(x) \) is not continuous at

 (i) \(x = -2 \) (ii) \(x = -1 \) (iii) \(x = 1 \) and
 (iv) \(x = 2 \).

 Determine which of these points are removable.

5. Determine the intervals on which \(f(x) \) is continuous.

 (i) \(f(x) = \frac{x^2 + 1}{x^2 - 2} \) (ii) \(f(x) = \sqrt{x^2 - 4} \) (iii) \(f(x) = \ln(3 + 2x) \)

 Extra points: (iv) \(f(x) = \frac{x}{\sqrt{4 - x^2}} \) (v) \(f(x) = \ln(4 - x^2) \)