Mathematics Quote: For a physicist mathematics is not just a tool by means of which phenomena can be calculated, it is the main source of concepts and principles by means of which new theories can be created.
– Freeman Dyson, Mathematics in the Physical Sciences.

1. Reading assignment for Section 1.5:
 (1) Remarks 5.1-5.2.
 (2) Theorem 5.1-5.2.
 (3) Examples 5.1-5.4,5.6.
 (4) Examples from the lecture notes.

 Turn in 2, 4

3. Find the limits without using calculator:
 (i) \(\lim_{x \to \infty} \frac{2x^2 + 1}{x^2 - 1} \)
 (ii) \(\lim_{x \to \infty} \frac{2x + 1}{x^2 - 1} \)
 (iii) \(\lim_{x \to \infty} \frac{2x^3 + 1}{x^2 - 1} \)
 (iv) \(\lim_{x \to -\infty} \frac{2x^3 + 1}{x^2 - 1} \)
 Extra points: (v) \(\lim_{x \to \infty} \frac{-2x + 3}{x^2 - 1} \)

4. State the definition of a vertical asymptote \(x = a \) of the graph of \(f(x) \).
 State the definition of a horizontal asymptote \(y = b \) of the graph of \(f(x) \).

5. Find algebraically each of vertical and horizontal asymptotes of \(f(x) \) if it exists without using calculator.
 (a) (i) \(f(x) = 3e^{-x^2} \) (ii) \(f(x) = 5e^{2x} \)
 (b) (i) \(f(x) = \ln(3 + 2x) \)
 (c) (i) \(f(x) = \frac{2x^2 + 1}{x^2 - 1} \) (ii) \(f(x) = \frac{x^2 + x - 2}{x^2 - 1} \) (iii) \(f(x) = \frac{1-x}{\sqrt{x^2 - 1}} \)
 (d) Extra points: (i) \(f(x) = \frac{1-x}{\sqrt{1-x^2}} \) (ii) \(f(x) = \tan(x) \) (iii) \(f(x) = \tan^{-1}(x) \)

6. Find the following limits algebraically (without using calculator).
 (a) \(\lim_{x \to \infty} xe^{-x} \) (note that \(e^{-x} = \frac{1}{e^x} \))
 (b) (i) \(\lim_{x \to 0} \frac{1 + e^x}{2 + 3e^x} \) (ii) \(\lim_{x \to \infty} \frac{1 + e^x}{2 + 3e^x} \) (iii) \(\lim_{x \to -\infty} \frac{1 + e^x}{2 + 3e^x} \)