3.4 - Increasing and Decreasing Functions

1. Increasing and Decreasing Functions

Definition: A function \(f \) is (strictly) increasing on an interval \(I \) if for every \(x_1, x_2 \) in \(I \) with \(x_1 < x_2 \), \(f(x_1) < f(x_2) \). A function \(f \) is (strictly) decreasing on an interval \(I \) if for every \(x_1, x_2 \) in \(I \) with \(x_1 < x_2 \), \(f(x_2) < f(x_1) \).

Example: The graph of \(f \) is given below.

<table>
<thead>
<tr>
<th>(f) is increasing on ((0, 0.8), (2.5, 4)).</th>
<th>(f) is decreasing on ((0.8, 2.5), (4, \infty)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>(f(x))</td>
</tr>
</tbody>
</table>

![Graph of f(x)](image-url)
Theorem: Suppose that f is differentiable on an interval I.

(i) If $f'(x) > 0$ for all x in I, then f is increasing on I.

(ii) If $f'(x) < 0$ for all x in I, then f is decreasing on I.

Proof: Let x_1 and x_2 be in I and $x_1 < x_2$. Then by the Mean Value Theorem, we know there exists a value c in (x_1, x_2) such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

If $f'(c) > 0$, then $\frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$ that implies $f(x_2) - f(x_1) > 0$ because $x_2 > x_1$. Hence, $f(x_2) > f(x_1)$, that is, f is increasing. In a similar way, we can show (ii).
Example: The graph of f' is given below. Determine graphically the interval on which f is increasing.

\[f' \]

\[\begin{array}{c}
\text{f is increasing on (0, 1.6), (3.1, 4.7)} \\
\text{because } f'(x) > 0
\end{array} \]

Example: Find the intervals where $f(x) = 2x^3 + 9x^2 - 24x - 10$ is increasing and decreasing. Verify your answers by graphing both f and f'.

\[f' \]
Example: Find the intervals where \(f(x) = 2x^3 + 9x^2 - 24x - 10 \) is increasing and decreasing. Verify answers with graphs of \(f \) and \(f' \).

Step I: Compute \(f' : f'(x) = 6x^2 + 18x - 24 = 6(x + 4)(x - 1) \)

Step II: Find values of \(x \) at which \(f'(x) = 0 \): \(x = -4 \) and \(x = 1 \).

Step III: Check sign changes of \(f' \) over intervals: \((-\infty,-4), (-4,1), (1,\infty)\)

\[
\begin{align*}
 f'(-5) &= 36 \\
 f'(0) &= -24 \\
 f'(2) &= 36
\end{align*}
\]

<table>
<thead>
<tr>
<th>interval</th>
<th>((-\infty,-4))</th>
<th>((-4,1))</th>
<th>((1,\infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>sign of (f'(x))</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

So, \(f \) is increasing on \((-\infty,-4), (1,\infty)\) and is decreasing on \((-4,1)\).
2. First Derivative Test For Local Extrema (maxima or minima):

Theorem: Suppose that f is continuous on $[a, b]$ and c in (a, b) is a critical number.

(i) If f' changes sign from positive to negative at $x = c$, then $f(c)$ is a local maximum of f. The number c is called a local maximum point.

(ii) If f' changes sign from negative to positive at $x = c$, then $f(c)$ is a local minimum of f. The number c is called a local minimum point.

(iii) If f' does not change sign at $x = c$, then $f(c)$ is not a local extremum.

Example: Let $f(x) = x^2 e^{-3x}$. Find all critical numbers and use the 1st Derivative Test to classify each as the location of a local maximum, local minimum of neither.
Example: Let \(f(x) = x^2 e^{-3x} \). Find all critical numbers and use the 1st Derivative Test to classify each as the location of a local maximum, local minimum of neither.

Step I: Find the domain of \(f(x) : D_f = (-\infty, \infty) \).

Step II: Compute \(f' \) and find all critical numbers:

\[
f'(x) = 2xe^{-3x} - 3x^2 e^{-3x} = xe^{-3x}(2 - 3x).
\]

(1) Critical number of type (i): \(f'(x) = 0 \iff x = 0 \) or \(x = \frac{2}{3} \).

(2) Critical number of type (ii): None.

Step III: Check sign change of \(f' \) over intervals: \((-\infty, 0), \left(0, \frac{2}{3}\right), \left(\frac{2}{3}, \infty\right)\)

\[
\begin{align*}
f'(-1) &= (-1)e^3(5) < 0 \\
\frac{1}{3} & = (\frac{1}{3})e^{-1}(1) > 0 \\
f'(1) &= (1)e^{-3}(-1) < 0
\end{align*}
\]

<table>
<thead>
<tr>
<th>interval</th>
<th>((-\infty, 0))</th>
<th>(\left(0, \frac{2}{3}\right))</th>
<th>(\left(\frac{2}{3}, \infty\right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>sign of (f')</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

\(x = \frac{2}{3} \) is a local maximum point and \(x = 0 \) is a local minimum point.
Example: Let \(f(x) = \frac{x^2}{x^2 - 4} \). Find all asymptotes and extrema, and sketch the graph of \(f \).

Step I: horizontal and vertical asymptotes:

Horizontal asymptote: \(\lim_{x \to \pm\infty} \frac{x^2}{x^2 - 4} = 1, \ y = 1 \)

Vertical asymptote: \(x^2 - 4 = 0, \ x = 2, \ x = -2 \)

Step II: Compute \(f'(x) \) and find all critical numbers:

\[
f'(x) = \frac{2x(x^2 - 4) - x^2(2x)}{(x^2 - 4)^2} = \frac{2x(x^2 - 4 - x^2)}{(x^2 - 4)^2} = \frac{-8x}{(x^2 - 4)^2}.
\]

(1) Critical number of type (i): \(f'(x) = 0, \ -8x = 0, \ x = 0 \).

(2) Critical number of type (ii): \(f'(x) \) is not defined at \(x = \pm 2 \) but they are not in \(D_f \), so none.

Step III: Check sign change of \(f' \) over \((-\infty, 0), \ (0, \infty) \):

\(f'(x) > 0 \) for \(x \) in \((-\infty, 0) \) and \(f'(x) < 0 \) for \(x \) in \((0, \infty) \).

\(x = 0 \) is a local maximum point.
\[-y = f(x), \quad \therefore y = f'(x)\]
Example: Let \(f(x) = x^{5/3} - 3x^{2/3} \). Find all critical numbers and use the 1st Derivative Test to classify each as the location of a local maximum, local minimum of neither.

Step I: Find the domain of \(f(x) \): \(D_f = (-\infty, \infty) \).

Step II: Compute \(f' \) and find all critical numbers:

\[
f'(x) = \frac{5}{3}x^{2/3} - 2x^{-1/3} = x^{-1/3} \left(\frac{5}{3}x - 2 \right)
\]

(1) Critical number of type (i): \(f'(x) = 0 \iff x = \frac{6}{5} \).

(2) Critical number of type (ii): \(f'(x) \) is not defined when \(x = 0 \).

Step III: Check sign change of \(f' \) over intervals: \((-\infty, 0), (0, \frac{6}{5}), (\frac{6}{5}, \infty)\)

<table>
<thead>
<tr>
<th>interval</th>
<th>((-\infty, 0))</th>
<th>((0, \frac{6}{5}))</th>
<th>((\frac{6}{5}, \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>sign of (f')</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
 f'(-1) &= -(-\frac{11}{3}) > 0 \\
 f'(1) &= -\frac{1}{6} < 0 \\
 f'(2) &= \frac{1}{3\sqrt{2}}(\frac{4}{3}) > 0
\end{align*}
\]
So, $x = 0$ is a local maximum point and $x = \frac{6}{5}$ is a local minimum point.
Example: Sketch a graph of a function with the given properties:

(i)	$f(0) = 1$, $f(2) = 5$
(ii)	$f'(0) = 0$, $f'(2) = 0$
	$f'(x) < 0$, for $x < 0$ and $x > 2$;
	$f'(x) > 0$ for $0 < x < 2$

Example: Sketch a graph of a function with the given properties:

(i)	$f(-1.2) = 0$, $f(3) = 0$, $f(0)$ does not exist
(ii)	$f'(3) = 0$, $f'(0)$ does not exist
	$f'(x) < 0$, for $x < 0$ and $x > 3$;
	$f'(x) > 0$ for $0 < x < 3$