1. (3pts) Give the domain of \(g(x) = 2\sqrt{1 + 3x} \). Specify the domain in **an interval notation**.

2. (3pts) The graph of \(f(x) \) is given below. Find the following.

 1. State the interval(s) on which \(f(x) < 0 \).
 2. Give the domain (interval notation) of \(g(x) = \frac{1}{f(x)} \).
 3. Extra 2 points:
 Give the domain (in interval notation) of \(h(x) = \sqrt{f(x)} \).

3. (3pts) Based on the graph of \(f(x) \) given below find the limits.

 \[a. \ \lim_{x \to 1^-} f(x) = \]
 \[b. \ \lim_{x \to 1^+} f(x) = \]
 \[c. \ \lim_{x \to 1} f(x) = \]
 \[d. \ \lim_{x \to -2} f(x) = \]
 \[e. \ \lim_{x \to 2} f(x) = \]

4. (3pts) (i) Complete the following table by a calculator with at least 8 decimal digits:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\frac{x^2 - 4}{x - 1})</th>
<th>(\frac{x^2 - 4}{x - 2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.99999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.999999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9999999</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(ii) Based on the results obtained in the table, find numerically the limits

\[\lim_{x \to 2^-} \frac{x^2 - 4}{x - 1} = \]
\[\lim_{x \to 2^-} \frac{x^2 - 4}{x - 2} = \]