1. (2pts) Compute the following two limits.
 (a) \(\lim_{t \to 1^-} \langle \sqrt{t-1}, te^t \rangle \)
 (b) \(\lim_{t \to 1^-} \langle \ln(t-1), \sqrt{t-1}, te^t \rangle \)

2. (3pts) Let \(\vec{r}'(t) = \langle 3 \sin(t), 4e^{-2t} \rangle \). Find \(\vec{r}(t) \) if we know \(\vec{r}(0) = \langle 1,-1 \rangle \)

3. (4pts) Let \(\vec{r}(t) = \langle \cos(\pi t), e^{-2t}, t^2 - t \rangle \).
 (1) Compute the tangent vector \(\vec{r}'(t) \).
 (2) Determine if the tangent vector is orthogonal to \(\vec{r}(t) \) when \(t = 0 \).
 (3) Find all possible real values of \(t \) at which the tangent vector is parallel to the \(xy \)-plane.

4. (3pts) The curve \(C \) traced out by \(\vec{r}(t) \) is given below.
 (1) Sketch the vectors: \(\vec{r}'(t_0) \) and \(\vec{r}'(t_1) \).
 (2) Sketch the vectors: \(\vec{T}(t_0) \) and \(\vec{T}'(t_0) \).
 (3) Determine graphically if \(\kappa(t_0) > \kappa(t_1) \).