Directional Derivatives - (9.5)

1. **Gradient of a Scalar Function:**

 The Vector Differential Operator:
 \[
 \nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} \quad \text{or} \quad \nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} = \left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right].
 \]

 Let \(f(x,y) \) and \(F(x,y,z) \) be differentiable functions. Then
 \[
 \nabla f(x,y) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right], \quad \text{and} \quad \nabla F(x,y,z) = \left[\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z} \right].
 \]

 Vectors \(\nabla f(x,y) \) and \(\nabla F(x,y,z) \) are called gradient vectors of \(f \) and \(F \), respectively.

 Notations: \(\nabla f, \ \text{grad } f \).

Example

Let \(F(x,y,z) = 3e^{x^2+y^2} \cos \left(\frac{2x}{z} \right) \). Find \(\nabla F \) and \(\nabla F(\pi,1,2) \).

 \[
 \nabla F(x,y,z) = \left[6xe^{x^2+y^2} \cos \left(\frac{2x}{z} \right) - \frac{6x}{z} e^{x^2+y^2} \sin \left(\frac{2x}{z} \right), \frac{3x^2}{z} e^{x^2+y^2} \cos \left(\frac{2x}{z} \right), \frac{6x}{z^2} e^{x^2+y^2} \sin \left(\frac{2x}{z} \right) \right]
 \]

 \[
 \nabla F(\pi,1,2) = \left[-6\pi e^{\pi^2}, -\frac{3\pi^2}{2} e^{\pi^2}, 0 \right]
 \]

 Use the Scientific Notebook: define \(F(x,y,z) \) first and then type \(\nabla F(x,y,z) \) and click on Evaluate. Here is what you get:

 \[
 \left(6x \sqrt{y} e^{x^2+y^2} \cos 2 \frac{x}{z} - 6e^{x^2+y^2} \sin 2 \frac{x}{z}, \frac{3}{2} e^{x^2+y^2} \cos 2 \frac{x}{z}, 6e^{x^2+y^2} \left(\sin 2 \frac{x}{z} \right) \frac{x}{z^2} \right)
 \]

 To evaluate \(\nabla F(\pi,1,2) \), first define \(g(x,y,z) = \nabla F(x,y,z) \), that is,

 \[
 g(x,y,z) = \left(6x \sqrt{y} e^{x^2+y^2} \cos 2 \frac{x}{z} - 6e^{x^2+y^2} \sin 2 \frac{x}{z}, \frac{3}{2} e^{x^2+y^2} \cos 2 \frac{x}{z}, 6e^{x^2+y^2} \left(\sin 2 \frac{x}{z} \right) \frac{x}{z^2} \right)
 \]

 and then type \(g(\pi,1,2) \) and click on Evaluate. Here is what you see:

 \[
 g(\pi,1,2) = \left(-6\pi e^{\pi^2}, -\frac{3\pi^2}{2} e^{\pi^2}, 0 \right)
 \]

2. **Directional Derivatives:**

 Let \(F(x,y,z) \) be differentiable. Partial derivatives \(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \) and \(\frac{\partial F}{\partial z} \) measure the rates of change of \(F(x,y,z) \) along the \(x \)-axis, \(y \)-axis and \(z \)-axis or in the direction \(\vec{u} = [1,0,0], \vec{v} = [0,1,0] \) and \(\vec{w} = [0,0,1] \), respectively. How to evaluate the rate of change of \(F \) in a given direction \(\vec{d} \)?

 Definition

 Let \(\vec{u} = [\cos(\theta), \sin(\theta)] \) be a unit vector in the \(xy \)-plane and let \(z = f(x,y) \) be a differentiable function. The directional derivative of \(f \) in the direction \(\vec{u} \) is defined as:

 \[
 D_{\vec{u}}f(x,y) = \lim_{h \to 0} \frac{f(x + h \cos(\theta), y + h \sin(\theta)) - f(x,y)}{h}
 \]

 provided the limit exists.

 Note that when \(\theta = 0 \), \(D_{\vec{u}}f(x,y) = \frac{\partial f}{\partial x} \), and when \(\theta = \pi \), \(D_{\vec{u}}f(x,y) = \frac{\partial f}{\partial y} \).

 Observe that the following.

 a.
\[
\frac{f(x + h \cos(\theta), y + h \sin(\theta)) - f(x, y)}{h} = \frac{f(x + h \cos(\theta), y + h \sin(\theta)) - f(x, y) + f(x + h \cos(\theta), y + h \sin(\theta)) - f(x, y)}{h}
\]

where the first term involves the change of \(f \) along the \(x \)-axis and the second term involves the change of \(f \) along the \(y \)-axis. By the Mean Value Theorem for differentiation \((g'(c) = \frac{g(b) - g(a)}{b-a})\), we know there exist \(x_1 \) between \(x \) and \(x + h \cos(\theta) \), and \(y_1 \) between \(y \) and \(y + h \sin(\theta) \) such that

\[
\frac{f(x + h \cos(\theta), y + h \sin(\theta)) - f(x, y)}{h} = \frac{\partial f}{\partial x} (x_1, y_1) (h \cos(\theta)) + \frac{\partial f}{\partial y} (x_1, y_1) (h \sin(\theta)).
\]

Then as \(h \to 0 \), \(x_1 \to x \) and \(y_1 \to y \), and

\[
D_u f(x, y) = \lim_{h \to 0} \left[\frac{\frac{\partial f}{\partial x} (x_1, y_1) (h \cos(\theta)) + \frac{\partial f}{\partial y} (x_1, y_1) (h \sin(\theta))}{h} \right]
\]

\[
= \lim_{h \to 0} \left[\frac{\partial f}{\partial x} (x_1, y_1) (\cos(\theta)) + \frac{\partial f}{\partial y} (x_1, y_1) (\sin(\theta)) \right]
\]

\[
= \frac{\partial f}{\partial x} (x_1, y) (\cos(\theta)) + \frac{\partial f}{\partial y} (x, y) (\sin(\theta)) = \nabla f(x, y) \cdot \vec{u}.
\]

In a similar way, we can derive a similar formula for computing \(D_\vec{v} F(x, y, z) = \nabla F(x, y, z) \cdot \vec{v} \).

b. Let \(\theta \) be the angle between vectors \(\vec{u} \) and \(\nabla F(x, y, z) \). Then

\[
D_\vec{u} F(x, y, z) = \nabla F(x, y, z) \cdot \vec{u} = ||\nabla F(x, y, z)|| ||\vec{u}|| \cos(\theta) = ||\nabla F(x, y, z)|| ||\vec{u}|| \cos(\theta).
\]

Since \(-1 \leq \cos(\theta) \leq 1\),

\[
-||\nabla F(x, y, z)|| \leq D_\vec{u} F(x, y, z) \leq ||\nabla F(x, y, z)||.
\]

The maximum value of the directional derivative is \(||\nabla F(x, y, z)|| \) and it occurs when \(\vec{u} = \nabla F(x, y, z) \) and the maximum value of the direction derivative is \(-||\nabla F(x, y, z)|| \) and it occurs when \(\vec{u} = -\nabla F(x, y, z) \).

So, the gradient vector \(\nabla F \) points in the direction in which \(F \) increases most rapidly whereas \(-\nabla F \) points in the direction of the most rapid decrease of \(F \).

Example Let \(F(x, y, z) = \frac{x^2 - y^2}{z^2} \). Find the directional derivatives of \(F \) in the directions \(\vec{u} = \vec{i} - 2\vec{j} + 3\vec{k} \) and \(\vec{v} = \nabla F(x, y, z) \) at the point \((2, 4, -1)\).

\[
\nabla F(x, y, z) = \left[\frac{2x}{z^2}, \frac{-2y}{z^2}, \frac{-2(x^2 - y^2)}{z^3} \right]. \quad \nabla F(2, 4, -1) = \left[4, \ -8, \ -24 \right]
\]

\[
D_\vec{u} F(2, 4, -1) = \left[4, \ -8, \ -24 \right] \cdot \frac{1}{\sqrt{1 + 4 + 9}} [1, -2, 3] = \frac{-26}{7} \sqrt{14} = -13.90
\]

\[
D_\vec{v} F(2, 4, -1) = \left[4, \ -8, \ -24 \right] \cdot \frac{1}{\sqrt{4^2 + 8^2 + 24^2}} \left[4, \ -8, \ -24 \right] = \sqrt{4^2 + 8^2 + 24^2} = 4 \sqrt{41} = 25.61
\]

Example Find a vector that gives the direction in which \(F(x, y, z) = \ln \left(\frac{xy}{z} \right) \) decreases most rapidly at \(\left(\frac{1}{2}, \ \frac{1}{6}, \ \frac{1}{3} \right) \).

The \(\vec{u} = -\nabla F \left(\frac{1}{2}, \ \frac{1}{6}, \ \frac{1}{3} \right) \) is a direction in which \(F(x, y, z) = \ln \left(\frac{xy}{z} \right) \) decreases most rapidly.
\[F(x,y,z) = \ln(x) + \ln(y) - \ln(z), \quad \nabla F(x,y,z) = \left[\frac{1}{x}, \frac{1}{y}, -\frac{1}{z} \right]. \]
\[\nabla F\left(\frac{1}{2}, \frac{1}{6}, \frac{1}{3} \right) = [2, 6, -3], \quad \vec{u} = [-2, -6, 3]. \]

Example Suppose that \(\nabla f(a,b) = [2, -3] \). Find a unit vector \(\vec{u} \) so that (a) \(D_{\vec{u}} f(a,b) = 0 \), and (b) \(D_{\vec{u}} f(a,b) \) is a maximum.

a. Let \(\vec{u} = [\cos(\theta), \sin(\theta)] \). Then
\[D_{\vec{u}} f(a,b) = \nabla f(a,b) \cdot \vec{u} = 2\cos(\theta) - 3\sin(\theta) = 0 \Rightarrow 2\cos(\theta) = 3\sin(\theta), \quad \tan(\theta) = \frac{2}{3}, \]
\[\theta = \tan^{-1}\left(\frac{2}{3} \right), \text{ and } \vec{u} = \left[\cos\left(\tan^{-1}\left(\frac{2}{3} \right) \right), \sin\left(\tan^{-1}\left(\frac{2}{3} \right) \right) \right] = [0.83205, 0.5547]. \]

b. \[\vec{u} = \frac{1}{|\nabla f(a,b)|} \nabla f(a,b) = \frac{1}{\sqrt{4 + 9}} [2, -3] = [0.5547, -0.83205] \]

Example The temperature \(T \) at a point \((x,y,z)\) in space is inversely proportional to the square of the distance from \((x,y,z)\) to the origin. It is known that \(T(0,0,1) = 500 \). Find the rate of change of \(T \) at \((2,3,3)\) in the direction of \((3,1,1)\). In which direction from \((2,3,3)\) does the temperature \(T \) increase most rapidly and what is the maximum rate of change of \(T \)?

The function \(T \) is
\[T(x,y,z) = \frac{C}{x^2 + y^2 + z^2}, \quad T(0,0,1) = \frac{C}{1} = 500 \Rightarrow C = 500. \]
\[\nabla T(x,y,z) = g(x,y,z) = \left[\frac{-1000x}{(x^2 + y^2 + z^2)^2}, \frac{-1000y}{(x^2 + y^2 + z^2)^2}, \frac{-1000z}{(x^2 + y^2 + z^2)^2} \right] \]
\[\nabla T(2,3,3) = g(2,3,3) = \left[\frac{-500}{121}, \frac{-750}{121}, \frac{-750}{121} \right]. \]

The direction from \((2,3,3)\) in the direction of \((3,1,1)\) is \(\vec{u} = [1,-2,-2] \). So the rate of change is
\[D_{\vec{u}} T(2,3,3) = \left[\frac{-500}{121}, \frac{-750}{121}, \frac{-750}{121} \right] \cdot \frac{1}{\sqrt{1 + 4 + 4}} [1,-2,-2] = \frac{2500}{363}. \]

The temperature \(T \) increases most rapidly in the direction \(\vec{v} = \nabla T(2,3,3) \) and the maximum rate of change of \(T \) is
\[D_{\vec{v}} T(2,3,3) = ||\nabla T(2,3,3)|| = ||\vec{v}|| = 9.69094. \]

Example Find a function \(f \) if possible such that \(\nabla f(x,y) = \left[2x\sqrt{y} e^{x^2 y^2}, \frac{x^2}{2\sqrt{y}} e^{x^2 y^2} + 2y\cos(y^2) \right] \).

\[\frac{\partial f}{\partial x} = 2x\sqrt{y} e^{x^2 y^2} \Rightarrow f(x,y) = \int 2x\sqrt{y} e^{x^2 y^2} \, dx = e^{x^2 y^2} + C(y) \]
\[\frac{\partial f}{\partial y} = \frac{1}{2\sqrt{y}} x^2 e^{x^2 y^2} + C'(y) = \frac{x^2}{2\sqrt{y}} e^{x^2 y^2} + 2y\cos(y^2) \]
\[C'(y) = 2y\cos(y^2), \quad C(y) = \int 2y\cos(y^2) \, dy = \sin(y^2) + C \]
\[f(x,y) = e^{x^2 y^2} + \sin(y^2) + C \]