1. **Mean Value Theorem:**
 a. **Rolle’s Theorem:**
 Suppose that \(f \) is **continuous** on \([a, b]\) and is **differentiable** on \((a, b)\). If \(f(a) = f(b) \), then there exists a number \(c \) in \((a, b)\) such that \(f'(c) = 0 \).
 b. **Mean Value Theorem:**
 Suppose that \(f \) is **continuous** in \([a, b]\) and is **differentiable** on \((a, b)\). Then there exists a number \(c \) in \((a, b)\) such that
 \[
 f'(c) = \frac{f(b) - f(a)}{b - a}.
 \]

Note that:
 a. **Rolle’s Theorem** is a special case of the **Mean Value Theorem**.
 b. By Rolle’s Theorem, we know if \(f'(x) \neq 0 \) for all \(x \) in \((a, b)\), then \(f(a) \neq f(b) \). On the other hand, the condition \(f(a) \neq f(b) \) alone is not enough for us to determine if there exists a number \(c \) in \((a, b)\) such that \(f'(c) = 0 \).

Graphically, Rolle’s Theorem and the Mean Value Theorem can be described as follows.

![Graph](image)

\[
f(0) = f(2), \ f'(1) = 0
\]

c. When \(b \) is close to \(a \) (\(|b - a|\) is small), \(f'(c) \approx \frac{f(b) - f(a)}{b - a} \) and \(f'(x) \approx \frac{f(b) - f(a)}{b - a} \) for \(x \in (a, b) \).

Example **First show that the equation** \(x - e^{-x} = 0 \) **has a solution in** \([0, 1]\). **Then Determine if the solution is unique.**

Let \(f(x) = x - e^{-x} \). Since \(f(0)f(1) = (0 - 1)\left(1 - \frac{1}{e}\right) = -0.632 < 0 \), by the Intermediate Value Theorem there exists a number \(c \) in \((0, 1)\) such that \(f(c) = 0 \). Therefore, the equation \(x - e^{-x} = 0 \) has a solution in \([0, 1]\). Now let us check to see if \(f'(x) = 0 \) for \(x \) in \((0, 1)\),

\[
f'(x) = 1 + e^{-x} > 0 \text{ for all } x.
\]

So, \(f'(x) \neq 0 \) for all \(x \) in \((0, 1)\) and therefore, \(f(x) = 0 \) only once and the solution is unique.
Example The graph of \(f(x) = x \cos(x + 0.2) \) for \(x \) in \([-2, 2]\) is given below. Find graphically all possible \(c \) in \((-2, 2)\) satisfying the conclusion given in the Mean Value Theorem. Approximate \(f'(c) \) for each \(c \).

Approximately, \(c_1 = -1.19 \) and \(c_2 = 0.89 \).

\[
\begin{align*}
\frac{f'(c_1)}{2} & \approx \frac{f(-1) - f(-1.5)}{-1 + 1.5} = \frac{-0.697 - (-0.401)}{0.5} = -0.592 \\
\frac{f'(c_2)}{2} & \approx \frac{f(1) - f(0.5)}{1 - 0.5} = \frac{0.362 - 0.382}{0.5} = -0.04 \\
\end{align*}
\]

Comparison:
\[
\begin{align*}
f'(c_1) & \approx -0.446, \quad f'(c_2) = -0.327 \\
\end{align*}
\]

2. Fixed-Point of a Function:
A number \(p \) is said to be a **fixed point** of a function \(g(x) \) if \(g(p) = p \). Graphically, a function has a fixed point at \(x = p \) if its graph \(y = g(x) \) and the line \(y = x \) intersect at \(x = p \).

\[
e^{-p} = p, \text{ when } p \approx 0.58
\]

Some functions may have more than one fixed points and some functions may not have a fixed point. For example, the function in (i) has **no fixed point** and the function in (ii) has **infinitely many fixed points**.
Algebraically, we solve the equation $g(x) = x$ (or $g(x) - x = 0$) to determine if a function has any fixed point over a given interval.

Example Find all fixed points of $g_1(x) = x^2 + 1$ and $g_2(x) = x + \cos(x)$ if they exist.

a. Set $g_1(x) = x: x^2 + 1 = x$, $x^2 - x + 1 = 0$. Using the quadratic formula:

$$x = \frac{1 \pm \sqrt{1 - 4(1)}}{2} = \frac{1 \pm \sqrt{-3}}{2}$$

no real solution.

So, $g_1(x)$ has no fixed point for $-\infty < x < \infty$.

b. Set $g_2(x) = x: x + \cos(x) = x$, $\cos(x) = 0$, $x = \pm \frac{2n-1}{2}\pi$, $n = 1, 2, 3, \ldots$

So, $g_2(x)$ has infinitely many fixed points for $-\infty < x < \infty$.

3. Existence and Uniqueness of a Fixed Point:

Let g be continuous on $[a, b]$.

i. If $a \leq g(x) \leq b$ for all x in $[a, b]$, then $g(x)$ has a fixed point p in $[a, b]$.

ii. If, in addition, $g'(x)$ exists on (a, b) and there exists a constant $0 < K < 1$ such that

$$|g'(x)| \leq K$$

for all x in (a, b),

then p is unique.

Note that:

a. Both conditions: $a \leq g(x) \leq b$ for all x in $[a, b]$ and $|g'(x)| \leq K$ for all x in (a, b) are **sufficient conditions**. So, in the case where the condition in i. does not hold, it is possible that $g(x)$ has a fixed point; and in the case where the condition in ii. is not satisfied, it is also possible the fixed point of $g(x)$ is unique.

b. Because $g'(x)$ is the slope of the tangent line to the curve $y = g(x)$ at x, $|g'(x)| \leq K < 1$ means that the graph of $g(x)$ does not grow as faster than $y = x$ and not slower than $y = -x$.

Proof:

i. If $g(a) = a$ or $g(b) = b$, then $p = a$ or $p = b$ and g has a fixed point. Now let $g(a) > a$ and $g(b) < b$, and let $h(x) = g(x) - x$. Since $g(x)$ is continuous on $[a, b]$, $h(x)$ is continuous on $[a, b]$. Observe that $h(a) = g(a) - a > 0$ and $h(b) = g(b) - b < 0$. So, by the Intermediate Value Theorem, we know there exists a number c in (a, b) such that $h(c) = 0$, that is

$$g(c) - c = 0$$ or $$g(c) = c.$$
So, \(c \) is a fixed point of \(g \) in \([a, b]\).

ii. Now let also \(|g'(x)| \leq K \) for all \(x \) in \((a, b)\) where \(0 < K < 1 \). Suppose that \(g(x) \) has two fixed points, say \(p < q \) in \([a, b]\). Then by the Mean Value Theorem, we know there exists a point \(c \) in \((q, p)\) such that

\[
g'(c) = \frac{g(p) - g(q)}{p - q}.
\]

Since \(g(p) = p \) and \(g(q) = q \),

\[
\frac{g(p) - g(q)}{p - q} = \frac{p - q}{p - q} = 1.
\]

So, \(g'(c) = 1 \), this contradicts the given condition \(|g'(x)| < 1 \) for all \(x \) in \((a, b)\). So, \(g \) cannot have two fixed points in \((a, b)\).

Example Let \(g(x) = \frac{1}{3}(x^2 - 1) \) for \(x \) in \([-1, 1]\). Determine if \(g \) has a fixed point in \([-1, 1]\). If so, determine if the fixed point is unique.

Check:

i. Observe that \(g_{\text{min}} = g(0) = -\frac{1}{3} \geq -1 \) and \(g_{\text{max}} = g(1) = g(-1) = 0 \leq 1 \). Since \(-1 \leq g(x) \leq 1\) for all \(x \) in \([-1, 1]\), \(g \) has a fixed point in \([-1, 1]\).

ii. Compute \(g'(x) = \frac{2}{3}x \). Since \(|g'(x)| = \frac{2}{3}|x| \leq \frac{2}{3} < 1 \), \(g \) has a unique fixed point in \([-1, 1]\).

For \(g(x) \), we can solve its fixed point \(p \) algebraically.

\[
g(x) = x \Rightarrow \frac{1}{3}(x^2 - 1) = x \Rightarrow x^2 - 3x - 1 = 0 \Rightarrow x = \frac{3 \pm \sqrt{9 - 4(-1)}}{2} = \frac{3 \pm \sqrt{13}}{2}
\]

Since \(\frac{3 + \sqrt{13}}{2} > 1 \), \(p = \frac{3 - \sqrt{13}}{2} = -0.302776 \) is a unique fixed point in \([-1, 1]\).

Check the graph of \(g(x) \):

\[
y = \frac{1}{3}(x^2 - 1), \text{---} \ y = x, \ y =
\]

Example Let \(g(x) = 3^{-x} \) for \(x \) in \([0, 1]\). Determine if \(g \) has a fixed point in \([0, 1]\). If so, determine if the fixed point is unique.

Check:

i. Observe that \(g_{\text{min}} = g(1) = 3^{-1} > 0 \), and \(g_{\text{max}} = g(0) = 1 \). Since \(0 \leq g(x) \leq 1 \), \(g(x) \) has a fixed point in \([0, 1]\).

ii. Compute \(g'(x) = -3^{-x} \ln 3 \). Since \(|g'(x)| = 3^{-x} \ln 3 \), there is no conclusion about the uniqueness.

From the graph of \(g \) below, we can see that \(g \) has a unique fixed point \(p \approx 0.55 \) in \([-1, 1]\). But we
cannot solve p algebraically. How can solve a fixed point numerically?

$$y = 3^{-x}, \ x \in [0, 1]$$

4. The Fixed-Point Iteration:

It is an algorithm to find a fixed-point of a function over an interval assuming the fixed point is unique.

Algorithm: Given $g(x)$, and $[a, b]$, choose p_0 in $[a, b]$ and compute p_1, p_2, \ldots, as follows:

$$p_n = g(p_{n-1}) \quad \text{for } n = 1, 2, \ldots$$

Implement the algorithm in a programming language which does the following:

- Input $g(x)$, interval $[a, b]$, p_0 in $[a, b]$, ϵ and K_{max}, and compute $p_n = g(p_{n-1})$ for $n = 1, 2, \ldots$. The program terminates if
 - $|p_n - p_{n-1}| < \epsilon$ and then $p \approx p_n$; or
 - $p_n > b$ or $p_n < a$, and the program fails; or
 - $n = K_{max}$.

The following two examples show graphically how the Fixed-Point Iteration works.

Clearly, the Fixed-Point iteration finds the fixed point p in (i) and diverges in (ii).

5. Convergence and the Rate of Convergence:
Questions: Assume that \(g \) has a unique fixed point \(p \) in \([a, b]\) and \(p_0 \) is in \([a, b]\). Let \(p_n = g(p_{n-1}), \ n = 1,2, \ldots \).

i. Under what condition(s), does \(p_n \) converge to \(p \)?

ii. If \(\lim_{n \to \infty} p_n = p \), what is the rate of converge?

Fixed-Point Theorem:

Let \(g \) be continuous on \([a, b]\) and \(a \leq g(x) \leq b \). Suppose that \(g'(x) \) exists for all \(x \) in \((a, b)\), and

\[
|g'(x)| \leq K \text{ for all } x \text{ in } (a, b) \text{ where } 0 < K < 1.
\]

Then \(\lim_{n \to \infty} p_n = p \) for any \(p_0 \) in \([a, b]\), and

\[
|p_n - p| \leq K^n \max\{p_0 - a, \ b - p_0\} \text{ and } |p_n - p| \leq \frac{K^n}{1-K} \left| p_1 - p_0 \right|, \text{ for all } n = 1,2, \ldots.
\]

Proof: Let \(p_0 \) be in \([a, b]\) and \(\{p_n\} \) be generated by the Fixed-Point Iteration. Observe that

\[
|p_n - p| = \left| g(p_{n-1}) - g(p) \right|
\]

By the Mean Value Theorem, we know there exists a number \(c \) in \((a, b)\) such that

\[
g(p_{n-1}) - g(p) = g'(c)(p_{n-1} - p).
\]

Since \(|g'(x)| < 1 \) for all \(x \) in \((a, b)\),

\[
|p_n - p| = |g(p_{n-1}) - g(p)| = |g'(c)(p_{n-1} - p)| = |g'(c)| \left| p_{n-1} - p \right| \leq K \left| p_{n-1} - p \right|
\]

\[
\leq K \left| p_{n-2} - p \right| = K^2 \left| p_{n-2} - p \right| \ldots
\]

\[
\leq K^n |p_0 - p|
\]

\[
0 < \lim_{n \to \infty} |p_n - p| \leq \lim_{n \to \infty} K^n |p_0 - p| = 0.
\]

Therefore, \(\lim_{n \to \infty} p_n = p \).

Since \(|p_0 - \mathbf{p}| \leq |p_0 - a| \) or \(|p_0 - \mathbf{p}| \leq |b - p_0| \),

\[
|p_n - \mathbf{p}| \leq K^n |p_0 - \mathbf{p}| \leq K^n \max\{p_0 - a, b - p_0\}.
\]

Observe that

\[
|p_{n+1} - p_n| = |g(p_n) - g(p_{n-1})| \leq K \left| p_n - p_{n-1} \right| = K \left| g(p_{n-1}) - g(p_{n-2}) \right|
\]

\[
\leq K^2 \left| g(p_{n-2}) - g(p_{n-3}) \right| \leq \ldots
\]

\[
\leq K^n |p_1 - p_0|
\]

So for any \(m > n \geq 1 \),

\[
|p_m - p_n| = |(p_m - p_{m-1}) + (p_{m-1} - p_{m-2}) + \ldots + (p_{n+1} - p_n)|
\]

\[
\leq |p_m - p_{m-1}| + |p_{m-1} - p_{m-2}| + \ldots + |p_{n+1} - p_n|
\]

\[
\leq K^{m-1} |p_1 - p_0| + K^{m-2} |p_1 - p_0| + \ldots + K^n |p_1 - p_0|
\]

\[
= K^n (K^{m-n-1} + K^{m-n-2} + \ldots + 1) |p_1 - p_0|
\]

\[
= K^n \left(\frac{1 - K^{m-n}}{1-K} \right) |p_1 - p_0|
\]

Since \(\lim_{m \to \infty} p_m = p \),
\[|p - p_n| = \lim_{m \to \infty} |p_m - p_n| \leq \lim_{m \to \infty} K^n \left(\frac{1 - K^{m-n}}{1 - K} \right) |p_1 - p_0| = \frac{K^n}{1 - K} |p_1 - p_0| \]

Note that:

a. Rate of convergence:
\[|p_n - p| \leq \frac{K^n}{1 - K} |p_1 - p_0|, \text{ for all } n = 1, 2, \ldots \] implies that
\[p_n \to p \text{ with the rate of convergence of } O(K^n), \text{ i.e., } p_n = p + O(K^n). \]

b. Order of convergence: From
\[|p_n - p| = |g'(c_{n-1})||p_{n-1} - p| \leq K |p_{n-1} - p|, \] we have
\[\frac{|p_n - p|}{|p_{n-1} - p|} \leq K. \]

Hence, \(\{p_n\} \) converges to \(p \) linearly (\(\alpha = 1 \)) with an asymptote error constant \(K \).

c. The smallest possible number of iterations: For a given \(\varepsilon \), we can estimate the number \(N \) of iterations needed to approximate \(p \) by \(p_N \). That is, find \(N \) such that
\[\frac{K^n}{1 - K} |p_1 - p_0| < \frac{K^n}{1 - K} |b - a| < \varepsilon \Rightarrow K^n < \varepsilon \left(\frac{1 - K}{b - a} \right) \Rightarrow N \ln(K) < \ln \left(\varepsilon \left(\frac{1 - K}{b - a} \right) \right) \]

Since \(0 < K < 1 \), \(\ln(K) < 0 \). So, \(N > \frac{\ln \varepsilon + \ln \left(\frac{1 - K}{b - a} \right)}{\ln(K)} \).

Example

Determine whether or not the function has a fixed point in the given interval. If so, determine if the Fixed-point Iteration will converge to the fixed point. In the case when it converges, estimate the number of iterations possibly needed to approximate the fixed point within \(10^{-5} \).

(i) \(g(x) = \frac{1}{3}(2 - e^x + x^2), \ [0, 1] \)

(ii) \(g(x) = \frac{1}{2}(10 - x^3)^{1/2}, \ [0, 2] \)

(i) Check the range of \(g \) : From the graph of \(g(x) \) on \([0, 1]\), we have \(0 \leq g(x) \leq 1 \).

So, \(g(x) = \frac{1}{3}(2 - e^x + x^2) \) has a fixed point in \([0, 1]\).

Check the maximum value of \(|g'(x)| \) :
\[g'(x) = \frac{1}{3}(-e^x + 2x). \] From the graph of \(|g'(x)|\),
\[|g'(x)| \leq |g'(0)| = \left| \frac{1}{3}(-1) \right| = \frac{1}{3} = K < 1 \text{ for all } x \text{ in } [0, 1]. \]

So, \(g(x) \) has a unique fixed-point in \([0, 1]\) and the sequence \(\{p_n\} \) generated by the Fixed-Point Iteration converges to \(p \) linearly (\(\alpha = 1 \)) with an asymptote error constant \(K \).
Iteration converges to p.
Estimate the number N of iterations:

$$N > \frac{\ln 10^{-5} + \ln \left(1 - \frac{1}{10}\right)}{\ln \left(\frac{1}{10}\right)} = 10.8486, \quad N = 11.$$

Use the Fixed-Point Iteration to solve the fixed point in $[0,1]$ and $p \approx p_n$ where $|p_n - p_{n-1}| < 10^{-5}$.

$p_0 = 0$

0.33333333333333
0.23849956200834
0.26251296366787
0.25623991092001
0.25786540708179
0.25744331555362
0.2575285995622
0.2575242613046
0.25753180626754

$n = 9$.

b. Check the range of $g(x)$: Observe that

$$g_{\text{min}} = g(2) = \frac{1}{2} \sqrt{10-8} = \frac{\sqrt{2}}{2} \geq 0, \quad g_{\text{max}} = g(0) = \frac{1}{2} \sqrt{10} \leq 2.$$

So, $0 \leq g(x) \leq 2$ for all x in $[0,2]$. Hence, $g(x)$ has a fixed point in $[0,2]$.

Check the maximum value of $|g'(x)|$:

$$g'(x) = \frac{1}{2} \frac{-3x^2}{\sqrt{10-x^3}}, \quad |g'(x)| = \frac{3x^2}{2\sqrt{10-x^3}}.$$

From the graph of $|g'(x)|$:

$$y = |g'(x)| = \left| \frac{1}{2} \frac{-3x^2}{\sqrt{10-x^3}} \right|$$

$|g'(x)| > 1$ for some x in $[0,2]$. So we cannot conclude the sequence $\{p_n\}$ generated by the Fixed-Point Iteration converges to p.

Use the Fixed-Point Iteration to solve the fixed point in $[0,1]$ and $p \approx p_n$ where $|p_n - p_{n-1}| < 10^{-5}$.

8
6. Fixed-Point Iteration for Solving The Equation: \(f(x) = 0 \)

Let \(x^* \) be a solution of the equation \(f(x) = 0 \). To solve \(x^* \) using the Fixed-Point Iteration, a function \(g \) needs to be defined first such that \(x^* \) is a fixed point of \(g \), that is, \(x^* = g(x^*) \).

Example Consider solving \(x^3 + x + 1 = 0 \). Find an interval \([a, b]\) on which the equation has a solution. Find a function \(g \) such that the fixed point of \(g \) is the solution of the equation: \(f(x) = 0 \). Determine if the sequence \(\{p_n\} \) generated by the Fixed-Point Iteration with the function \(g \).

Consider \([a, b] = [-1, 0]\). Since \(f(-1)f(0) = (-1)(1) < 0 \), the equation has a solution in \([-1, 0]\).

1. A naive choice of \(g \): since \(x = -1 - x^3 \), we can let \(g(x) = -1 - x^3 \).
 - Check the range of \(g \): \(g_{\text{min}} = g(0) = -1 \) and \(g_{\text{max}} = g(-1) = 0 \), so, \(-1 \leq g(x) \leq 0 \) and \(g \) has a fixed point in \([-1, 0]\).
 - Check the maximum value of \(|g'(x)| \): \(g'(x) = -3x^2 \), \(|g'(x)| = 3x^2 > 1 \) for some \(x \) in \([-1, 0]\).
 - So, it is not certain by the Fixed-Point Theorem if \(\{p_n\} \) converges to \(p \).
 - Observe that \(\{p_n\}_{n=0} = \{0, -1, 0, -1, \ldots\} \).

2. Rewrite the equation \(x^3 + x + 1 = 0 \) as \(x^3 = -1 - x \), \(x = -\sqrt[3]{-x + 1} \). Let \(g(x) = -\sqrt[3]{x + 1} \).
 - Check the range of \(g \): \(g_{\text{min}} = g(0) = -1 \), \(g_{\text{max}} = g(-1) = 0 \), so, \(-1 \leq g(x) \leq 0 \) and \(g \) has a fixed point in \([-1, 0]\).
 - Check the maximum value of \(|g'(x)| \): \(g'(x) = -\frac{1}{3} \frac{1}{\sqrt[3]{(x+1)^2}} \). Since \(g'(x) \) is not defined at \(x = -1 \), \(g'(x) \) is unbounded. So, it is not certain if \(\{p_n\} \) converges to \(p \).
 - Observe that \(\{p_n\}_{n=0} = \{0, -1, 0, -1, \ldots\} \).

3. Rewrite the equation \(x^3 + x + 1 = 0 \) as \(x^3 + x = -1 \) and then \(x(x^2 + 1) = -1 \) or \(x = \frac{-1}{x^2 + 1} \). Let \(g(x) = \frac{-1}{x^2 + 1} \).
 - Check the range of \(g \): \(g_{\text{min}} = g(0) = -1 \), and \(g_{\text{max}} = g(-1) = -\frac{1}{2} \), so, \(-1 \leq g(x) \leq 0 \) and \(g \) has a fixed point in \([-1, 0]\).
Check the maximum value of $|g'(x)|$:

| $g'(x)$ | $|g'(x)|$ |
|---------|---------|
| $-\frac{2x}{(x^2+1)^2}$ | $\frac{2|x|}{(x^2+1)^2}$ |

From the graph of $|g'(x)|$ above, we see $|g'(x)| \leq 0.7 = K < 1$. So, p is unique in $[-1, 0]$ and $\{p_n\}$ converges to p.

Estimate the number N of iterations needed:

$$N > \frac{\ln 10^{-5} + \ln(1 - 0.7)}{\ln(0.7)} = 35.654, \quad N = 36.$$

Use the Fixed-Point Iteration to solve the fixed point in $[0, 1]$ and $p \approx p_n$ where

$$|p_n - p_{n-1}| < 10^{-5}.$$

$n = 27$ and $p_{27} = -0.68232442571947$.

Example Show that each of the following functions has a fixed point at p precisely when $f(p) = 0$, where $f(x) = x^4 + 2x^2 - x - 3$.

a. $g(x) = (3 + x - 2x^2)^{1/4}$
b. $g(x) = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1}$

a. Set $x^4 + 2x^2 - x - 3 = 0$. Then

$$x^4 = 3 + x - 2x^2 \implies x = (3 + x - 2x^2)^{1/4}.$$

b. Check if $x = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1}$. Then

$$x - \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1} = \frac{4x^4 + 4x^2 - x - (3x^4 + 2x^2 + 3)}{4x^3 + 4x - 1} = \frac{x^4 + 2x^2 - x - 3}{4x^3 + 4x - 1} = 0.$$

So, $x = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1}$.

Example The following four methods are proposed to compute $7^{1/5}$. Rank them in order, based on their apparent speed of convergence, assuming $p_0 = 1$.

(i) $p_n = \left(1 + \frac{7 - p_{n-1}^3}{p_{n-1}^2}\right)^{1/2}$
(ii) $p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{p_{n-1}^2}$

(iii) $p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{5p_{n-1}^4}$
(iv) $p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{12}$

The function g for each iteration is:
(i) \(g_1(x) = \left(1 + \frac{7-x^3}{x^2}\right)^{1/2} = \left(1 + \frac{7}{x^2} - x\right)^{1/2} \)

(ii) \(g_2(x) = x - \frac{x^5 - 7}{x^2} = x - x^3 + \frac{7}{x^2} \)

(iii) \(g_3(x) = x - \frac{x^5 - 7}{5x^4} = x - \frac{1}{5}x^2 + \frac{7}{5x^4} \)

(iv) \(g_4(x) = x - \frac{x^5 - 7}{12} = x - x^3 + \frac{7}{12} \)

All four functions have a fixed point on \([a, b]\). Compute \(g'(x) \):

(i) \(g'_1(x) = \frac{1}{2} \left(1 + \frac{7}{x^2} - x\right)^{-1/2} \left(-\frac{14}{x^3} - 1\right) \)

(ii) \(g'_2(x) = 1 - 3x^2 - \frac{14}{x^3} \)

(iii) \(g'_3(x) = \frac{4}{5} - \frac{28}{5x^5} \)

(iv) \(g'_4(x) = 1 - \frac{5}{12}x^4 \)

Check the value of \(|g'(x)| \) at \(p = 7^{1/5} \):

\[|g'_1(p)| = \left| \frac{1}{2} \left(1 + \frac{7}{p^2} - p\right)^{-1/2} \left(-\frac{14}{p^3} - 1\right) \right| = 1.61828 > 1 \]

\[|g'_2(p)| = \left| 1 - 3p^2 - \frac{14}{p^3} \right| = 9.88953 > 1 \]

\[|g'_3(p)| = \left| \frac{4}{5} - \frac{28}{5p^5} \right| = 0 < 1 \]

\[|g'_4(p)| = \left| 1 - \frac{5}{12}p^4 \right| = 0.976365 < 1 \]

So, the sequences \(\{p_n\} \) generated by the Fixed-Point Iteration using \(g_1 \) and \(g_2 \) do not converge. The sequences \(\{p_n\} \) generated by the Fixed-Point Iteration using \(g_3 \) and \(g_4 \) converge and the third sequence converges faster than the 4th one. The testing results show that:

- Using \(g_3(x) \), \(7^{1/5} \approx p_7 = 1.47577316159456 \)
- Using \(g_4(x) \), \(7^{1/5} \approx p_{355} = 1.47577807080213 \)
Example Show that if \(A \) is any positive number, then the sequence defined by

\[
x_n = \frac{1}{2}x_{n-1} + \frac{A}{2x_{n-1}}, \text{ for } n \geq 1,
\]

converges to \(\sqrt{A} \) whenever \(x_0 > 0 \).

Let \(\lim_{n \to \infty} x_n = x \). Then

\[
\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(\frac{1}{2}x_{n-1} + \frac{A}{2x_{n-1}} \right) \iff x = \frac{1}{2}x + \frac{A}{2x} \iff \\
\frac{1}{2}x = \frac{A}{2x} \iff x^2 = A \iff x = \sqrt{A}.
\]