3.4 - Piecewise Linear-Quadratic Interpolation

Piecewise-polynomial Approximation:

Problem: Given \(n + 1 \) pairs of data points \((x_i, y_i), \ i = 0, 1, \ldots, n, \) find a piecewise-polynomial \(S(x) \)

\[
S(x) = \begin{cases}
S_0(x) & \text{if } x_0 \leq x \leq x_1 \\
S_1(x) & \text{if } x_1 \leq x \leq x_2 \\
& \vdots \\
S_{n-1}(x) & \text{if } x_{n-1} \leq x \leq x_n
\end{cases}
\]

where \(S_i(x) \) are polynomials and \(S(x_i) = y_i, \ i = 0, 1, \ldots, n. \)

Observe that each \(S_i \) can be in a different degree of polynomial or all \(S_i \) are in a same degree.

1. **Linear Splines:**

\[
L_i(x) = a_i + b_i(x - x_i), \ i = 0, 1, \ldots, n - 1, \quad \text{and } L(x) = \begin{cases}
L_0(x) & \text{if } x_0 \leq x \leq x_1 \\
& \vdots \\
L_{n-1}(x) & \text{if } x_{n-1} \leq x \leq x_n
\end{cases}
\]

2. **Quadratic Splines:**

\[
Q_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2, \ i = 0, 1, \ldots, n - 1, \quad \text{and } Q(x) = \begin{cases}
Q_0(x) & \text{if } x_0 \leq x \leq x_1 \\
& \vdots \\
Q_{n-1}(x) & \text{if } x_{n-1} \leq x \leq x_n
\end{cases}
\]

3. **Cubic Splines:** (Section 3.4)

\[
S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3, \ i = 0, 1, \ldots, n - 1.
\]

Question: How can we solve coefficients \(a_i, \) and \(b_i \) for a linear spline; \(a_i, b_i, \) and \(c_i \) for a quadratic spline; and \(a_i, b_i, c_i, \) and \(d_i \) for a cubic spline?

1. **Linear Splines:**

\[
L_i(x) = a_i + b_i(x - x_i), \ i = 0, 1, \ldots, n - 1.
\]

We need to find \(2n \) unknowns: \(a_0, a_1, \ldots, a_{n-1}, \ b_0, b_1, \ldots, b_{n-1} \) so that \(L_i(x) \) satisfy the following conditions:

1. \(L_i(x_i) = y_i, \ i = 0, 1, 2, \ldots, n - \) condition for interpolation, a total of \(n + 1 \) equations
2. \(L_i(x_{i+1}) = L_{i+1}(x_{i+1}), \ i = 0, 1, \ldots, n - 2 - \) condition for continuity at interior points, a total of \(n - 1 \) equations

Since we have \(2n \) equations for \(2n \) unknowns, we can solve \(a_i \) and \(b_i \) uniquely. Observe the following. From the condition in (1), \(L_i(x_i) = y_i, i = 0, 1, 2, \ldots, n, \) we can obtain \(a_i \) for \(i = 0, 1, \ldots, n - 1: \)

\[
L_i(x_i) = a_i = y_i, \ i = 0, 1, 2, \ldots, n - 1
\]

and \(b_{n-1} \)

\[
L_{n-1}(x_n) = b_{n-1}(x_n - x_{n-1}) + y_{n-1} = y_n, \quad b_{n-1} = \frac{y_n - y_{n-1}}{x_n - x_{n-1}}.
\]

From the the condition in (2), \(L_i(x_{i+1}) = L_{i+1}(x_{i+1}), \ i = 0, 1, \ldots, n - 2, \) we can solve \(b_i \) for \(i = 0, 1, \ldots, n - 2: \)

\[
L_i(x_{i+1}) = b_i(x_{i+1} - x_i) + y_i = L_{i+1}(x_{i+1}) = y_{i+1}, \quad b_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}, \ i = 0, 1, \ldots, n - 2.
\]
Theorem Let \(a = x_0 < x_1 < \cdots < x_n = b, \ h = \max_{0 \leq k \leq n-1} |x_{k+1} - x_k| \) and \(f''(x) \) be continuous on \([a,b]\). Then

\[
\max_{x \in [a,b]} |f(x) - L(x)| \leq \frac{1}{8} h^2 \max_{c \in [a,b]} |f''(c)|.
\]

Proof Let \(x \in [x_i, x_{i+1}] \). Then \(f(x) \approx L_i(x) = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x - x_i) \). Note that the Newton Form

\[
f(x) = f(x_i) + \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} (x - x_i) + \frac{f''(c_i(x))}{2!} (x - x_i)(x - x_{i+1}).
\]

Note that \(y_i = f(x_i), \ i = 0, \ldots, n \). So,

\[
f(x) = L_i(x) + \frac{f''(c_i(x))}{2!} (x - x_i)(x - x_{i+1}).
\]

Approximation error:

\[
|f(x) - L(x)| = |f(x) - L_i(x)| = \left| \frac{f''(c_i(x))}{2!} (x - x_i)(x - x_{i+1}) \right|
\]

\[
\leq \frac{1}{2} \max_{c_i \in [x_i, x_{i+1}]} \left| f''(c_i(x)) \right| \max_{x \in [x_i, x_{i+1}]} |(x - x_i)(x - x_{i+1})|.
\]

What is \(\max_{x \in [x_i, x_{i+1}]} |(x - x_i)(x - x_{i+1})| \)? Let \(q_i(x) = (x - x_i)(x - x_{i+1}) \). The graph of \(q_i(x) \) is a concave up parabola so the vertex \((\bar{x}_i, \bar{y}_i)\) of the parabola is the lowest point on the graph. Hence, \(\max_{x \in [x_i, x_{i+1}]} |(x - x_i)(x - x_{i+1})| = |\bar{y}_i| \). Because of the symmetry of a parabola,

\[
x_i = \frac{1}{2} (x_i + x_{i+1})
\]

and then

\[
|\bar{y}_i| = \left(\frac{1}{2} (x_i + x_{i+1}) - x_i \right) \left(x_{i+1} - \frac{1}{2} (x_i + x_{i+1}) \right) = \frac{1}{4} (x_{i+1} - x_i)^2 \leq \frac{1}{4} h^2.
\]

Hence,

\[
|f(x) - L(x)| \leq \frac{1}{2} \max_{c_i \in [x_i, x_{i+1}]} \left| f''(c_i) \right| \max_{x \in [x_i, x_{i+1}]} |(x - x_i)(x - x_{i+1})|
\]

\[
\leq \frac{1}{2} \max_{c \in [x_i, x_{i+1}]} \left| f''(c) \right| \left(\frac{1}{4} h^2 \right)
\]

\[
\leq \frac{1}{8} h^2 \max_{c \in [a,b]} \left| f''(c) \right|
\]

Note:

If we know \(x \in [x_i, x_{i+1}] \), then

\[
|f(x) - L(x)| = |f(x) - L_i(x)| \leq \frac{1}{8} (x_{i+1} - x_i)^2 \max_{x \in [x_i, x_{i+1}]} |f''(x)|.
\]
Example Let \(f(x) = \sqrt{x} + 1 \). Given \((0, 1), (3, 2), (8, 3)\),

(i) construct a linear spline \(L(x) \);

(ii) approximate \(f(2) \) by \(L(2) \) and \(f(5) \) by \(L(5) \); and

(iii) estimate the approximate errors for \(|f(2) - L(2)|, |f(5) - L(5)| \) and \(|f(x) - L(x)| \).

(i) \(L(x) = \begin{cases}
L_0(x) = a_0 + b_0x & \text{if } 0 \leq x \leq 3 \\
L_1(x) = a_1 + b_1(x - 3) & \text{if } 3 \leq x \leq 8
\end{cases} \)

\(\begin{align*}
L_0(x) &= 1 + \frac{1}{3}x \\
L_1(x) &= 2 + \frac{1}{5}(x - 3)
\end{align*} \)

(ii) \(f(2) \approx L_0(2) = 1 + \frac{2}{3} = \frac{5}{3} \)

\(f(5) \approx L_1(5) = 2 + \frac{1}{5}(5 - 3) = \frac{12}{5} \)

(iii) \(f'(x) = \frac{1}{2}(x + 1)^{-1/2}, f''(x) = -\frac{1}{4}(x + 1)^{-3/2}, |f''(x)| = \left| -\frac{1}{4}(x + 1)^{-3/2} \right| = \frac{1}{4} \sqrt{\frac{1}{(x + 1)^3}}. \)

For \(x = 2 \),

\(|f(2) - L(2)| \leq \frac{1}{8} (3 - 0)^2 \max_{c \in [0,3]} \left| \frac{1}{4} \sqrt{\frac{1}{(x + 1)^3}} \right| \leq \frac{1}{8} \sqrt{\frac{1}{3^3}} \left(\frac{1}{4} \right) = 0.28125, \)

and for \(x = 5 \),

\(|f(5) - L(5)| \leq \frac{1}{8} (8 - 3)^2 \max_{c \in [3,8]} \left| \frac{1}{4} \sqrt{\frac{1}{(x + 1)^3}} \right| \leq \frac{1}{8} \sqrt{\frac{1}{5^3}} \left(\frac{1}{4} \right) = 0.097656. \)

To see how accurate these approximations are, we check the true errors:

\(|f(2) - L(2)| = \left| \sqrt{2} + 1 - \frac{5}{3} \right| = 0.06538 \)

\(|f(5) - L(5)| = \left| \sqrt{5} + 1 - \frac{12}{5} \right| = 0.04949. \)

Now for any \(x \) in \([0,8]\),

\(|f(x) - L(x)| \leq \frac{1}{8} h^2 \max_{c \in [0,8]} \left| f''(c) \right| \)

\(\leq \frac{1}{8} \left(\frac{1}{4} \right)^2 \sqrt{\frac{1}{(x + 1)^3}} \left(\frac{1}{4} \right) = 0.78125. \)
2. Quadratic Splines:

\[Q_i(x) = a_i + b_i(x-x_i) + c_i(x-x_i)^2, \quad i = 0, 1, \ldots, n-1. \]

We need to find 3n unknowns: \(a_0, a_1, \ldots, a_{n-1}, b_0, b_1, \ldots, b_{n-1}, c_0, c_1, \ldots, c_{n-1} \) so that \(Q_i(x) \) satisfy the following conditions:

1. \(Q_i(x_i) = y_i, \quad i = 0, 1, 2, \ldots, n \) - condition for interpolation, a total of \(n + 1 \) equations
2. \(Q_i(x_{i+1}) = Q_{i+1}(x_{i+1}), \quad i = 0, 1, \ldots, n-2 \) - condition for continuity at interior points, a total of \(n - 1 \) equations
3. \(Q_i'(x_{i+1}) = Q_{i+1}'(x_{i+1}), \quad i = 0, 1, \ldots, n-2 \) - condition for continuous slope at interior points - \(n - 1 \) equations
4. one additional condition from the following three conditions:
 - (4.1) \(Q'(x_0) = \alpha \)
 - (4.2) \(Q'(x_n) = \beta \)
 - (4.3) \(Q'(x_0) = Q'(x_n) \)
 depending on information about \(f(x) \), 1 equation

Since we have 3n equations for 3n unknowns, we can again solve \(a_i, b_i \) and \(c_i \) uniquely. From the condition in (1), \(Q_i(x_i) = y_i, i = 0, 1, 2, \ldots, n \), we can obtain \(a_i \) for \(i = 0, 1, \ldots, n-1 \):

\[Q_i(x_i) = a_i = y_i, \quad i = 0, 1, 2, \ldots, n-1, \]

and an equation in \(b_{n-1} \) and \(c_{n-1} \):

\[Q_{n-1}(x_{n-1}) = y_{n-1} + b_{n-1}(x_{n-1} - x_{n-1}) + c_{n-1}(x_{n-1} - x_{n-1})^2 = y_n. \]
(1.1)

From the condition in (2), \(Q_i(x_{i+1}) = Q_{i+1}(x_{i+1}), \quad i = 0, 1, \ldots, n-2 \), we can obtain \(n - 1 \) equations in \(b_i \) and \(c_i \) for \(i = 0, 1, \ldots, n-2 \):

\[Q_i(x_{i+1}) = y_i + b_i(x_{i+1} - x_i) + c_i(x_{i+1} - x_i)^2 = Q_{i+1}(x_{i+1}) = y_{i+1}, \quad i = 0, 1, \ldots, n-2. \]
(2.1)

Similarly, from the condition in (3), \(Q_i'(x_{i+1}) = Q_{i+1}'(x_{i+1}), \quad i = 0, 1, \ldots, n-2 \), we can obtain \(n - 2 \) equations in \(b_i \) and \(c_i \) for \(i = 0, 1, \ldots, n-2 \):

\[Q_i'(x_{i+1}) = b_i + 2c_i(x_{i+1} - x_i) = Q_{i+1}'(x_{i+1}) = b_{i+1}, \quad i = 0, 1, \ldots, n-2. \]
(3.1)

with one more equation from the condition given in (4),

\[Q'(x_0) = Q_0'(x_0) = b_0 + 2c_0(x_1 - x_0) = \alpha \]

\[Q'(x_n) = Q_n'(x_n) = b_{n-1} + 2c_{n-1}(x_n - x_{n-1}) = \beta \]

or

\[Q'(x_0) = b_0 + 2c_0(x_1 - x_0) = Q'(x_n) = b_{n-1} + 2c_{n-1}(x_n - x_{n-1}), \]

we have 2n equations to solve \(b_i \)'s and \(c_i \)'s.

Example Let \(f(x) = \sqrt{x+1} \). Given \((0,1), (3,2), (8,3)\)

(i) construct a quadratic spline \(Q(x) \) suppose that we also know \(f'(0) = \frac{1}{2} \);

(ii) approximate \(f(2) \) by \(Q(2) \) and \(f(5) \) by \(Q(5) \);

(iii) approximate \(f'(3) \) by \(Q'(3) \) and \(f'(5) \) by \(Q'(5) \); and

(iv) approximate \(\int_0^3 f(x)dx \) by \(\int_0^3 Q(x)dx \).

(i)
We solve b_0, b_1, c_0 and c_1 as follows. From the condition (1.1):

$$Q_1(8) = 2 + b_1(5) + c_1(5)^2 = 2 + 5b_1 + 25c_1 = y_2 = 3.$$ (1.2)

From the condition in (2.1), we have the equation:

$$Q_0(3) = 1 + b_0(3) + c_0(3)^2 = 1 + 3b_0 + 9c_0 = Q_1(3) = y_1 = 2.$$ (2.2)

From the condition (3.1), we have the equation:

$$Q_0'(3) = b_0 + 2c_0(3) = b_0 + 6c_0 = Q_1'(3) = b_1.$$ (3.2)

From the condition (4.1), we have the equation:

$$Q_0'(0) = b_0 = \frac{1}{2}.$$ (4.1)

Solve c_0 in (2.2):

$$c_0 = \frac{1}{9}(2 - 1 - 3b_0) = \frac{1}{9} \left(1 - \frac{3}{2}\right) = -\frac{1}{18}.$$ (2.2)

Solve b_1 in (3.2):

$$b_1 = \frac{1}{2} + 6 \left(-\frac{1}{18}\right) = \frac{1}{6}.$$ (3.2)

and solve c_1 in (1.2):

$$c_1 = \frac{1}{25} \left(3 - 2 - \frac{5}{6}\right) = \frac{1}{150}.$$ (1.2)

Hence,

$$Q(x) = \begin{cases} Q_0(x) = 1 + \frac{1}{2}x - \frac{1}{18}x^2 & \text{if } 0 \leq x \leq 3 \\ Q_1(x) = 2 + \frac{1}{6}(x - 3) + \frac{1}{150}(x - 3)^2 & \text{if } 3 \leq x \leq 8 \end{cases}$$

(ii) $f(2) \approx Q(2) = Q_0(2) = 1 + \frac{1}{2}(2) - \frac{1}{18}(2^2) = \frac{16}{9} = 1.77777778$

$f(5) \approx Q(5) = Q_1(5) = 2 + \frac{1}{6}(2) + \frac{1}{150}(2)^2 = \frac{59}{25} = 2.36$

True errors:

$$\left|\sqrt{2 + 1} - \frac{16}{9}\right| = 0.04573, \quad \left|\sqrt{5 + 1} - \frac{59}{25}\right| = 0.0894897.$$
(iii) \(f'(3) \approx Q'(3) = Q'_0(3) = Q'_1(3) = \frac{1}{6} \)
\(f'(5) \approx Q'(5) = Q'_1(5) = \frac{1}{6} + \frac{2}{150} (5 - 3) = \frac{29}{150} = 0.193333. \)
(iv) \(\int_0^3 f(x) \, dx \approx \int_0^3 Q(x) \, dx = \int_0^3 Q_0(x) \, dx = \int_0^3 \left(1 + \frac{1}{2} x - \frac{1}{18} x^2 \right) \, dx = 4.75 \)

Exercises:

1. The following table gives the viscosity of sulfuric acid, in millipascal-seconds (centipoises), as a function of concentration, in mass percent:

<table>
<thead>
<tr>
<th>Concentration (C)</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity (V)</td>
<td>0.80</td>
<td>1.40</td>
<td>2.51</td>
<td>5.37</td>
<td>17.4</td>
<td>24.2</td>
</tr>
</tbody>
</table>

 a. Using given date, construct a linear spline \(L(C) \) to approximate the viscosity \(V(C) \).

 b. Estimate the viscosity by \(L(C) \) when the concentration is 5% and 63% and 92%.

2. Let \(f(x) = e^x \). Given \((-1, e^{-1}), (0, 1), (1, e)\), construct a linear spline \(L(x) \) to approximate \(f(x) \).

 a. Approximate \(f(-\frac{1}{2}) \) by \(L(-\frac{1}{2}) \) and \(f(\frac{1}{2}) \) by \(L(\frac{1}{2}) \); and

 b. Estimate the approximate errors for \(|f(-\frac{1}{2}) - L(-\frac{1}{2})|, |f(\frac{1}{2}) - L(\frac{1}{2})| \) and \(|f(x) - L(x)| \).

3. Given \((x_i, y_i) = \{(0, -1), (1, 2), (2, 1)\}\) where \(y_i = f(x_i) \) for some \(f(x) \), construct a quadratic spline \(Q(x) \) to approximate \(f(x) \) if we also know \(f''(0) = 3 \).

 a. Approximate \(f(\frac{1}{2}) \) by \(Q(\frac{1}{2}) \) and \(f(\frac{3}{2}) \) by \(Q(\frac{3}{2}) \).

 b. Approximate \(f'(1) \) by \(Q'(1) \) and \(f''(\frac{3}{2}) \) by \(Q'(\frac{3}{2}) \).

 c. Approximate \(\int_0^1 f(x) \, dx \) by \(\int_0^1 Q(x) \, dx \).