In Chapter 5, we study the numerical methods for solving initial-value problems for ordinary differential equations:

\[y'(t) = f(t, y), \quad a \leq t \leq b, \quad y(a) = \alpha. \]

1. **Lipschitz Condition:**

Definition 5.1 A function \(f(t, y) \) is said to satisfy a **Lipschitz condition** in the variable \(y \) on a set \(D \subset \mathbb{R}^2 \) if there exists a constant \(L > 0 \) such that

\[|f(t_1, y_1) - f(t_2, y_2)| \leq L \|y_1 - y_2\|, \]

whenever both points \((t, y_1)\) and \((t, y_2)\) are in \(D \). The constant \(L \) is called a **Lipschitz constant** for \(f \).

Example Let \(f(t, y) = 1 + ty^2 \) and \(D = \{(t, y) \mid 0 \leq t \leq 2, \quad -1 \leq y \leq 1\} \). Does \(f \) satisfy a Lipschitz condition on \(D \)? If so, find its Lipschitz constant.

Let \((t, y_1)\) and \((t, y_2)\) be in \(D \), i.e., \(t \) is in \([0, 2]\) and \(y \) is in \([-1, 1]\). Observe that

\[|f(t, y_1) - f(t, y_2)| = |1 + ty_1^2 - (1 + ty_2^2)| = |t||y_1^2 - y_2^2| = |t||y_1 + y_2||y_1 - y_2|. \]

Because \(|t| \leq 2 \) and \(|y_1 + y_2| \leq 2 \), we have

\[|f(t, y_1) - f(t, y_2)| \leq (2)(2)|y_1 - y_2| = 4|y_1 - y_2|. \]

So, \(f \) satisfies a Lipschitz condition and its Lipschitz constant is 4.

Note that the Lipschitz constant \(L \) is not unique, that is, for any \(\overline{L} > 4 \), the inequality

\[|f(t, y_1) - f(t, y_2)| \leq \overline{L}|y_1 - y_2| \]

also holds. So, in practice, we want to find a \(L \) as small as possible.

2. **Convex Set:**

Definition 5.2 A set \(D \subset \mathbb{R}^2 \) is said to be **convex** if whenever \((t_1, y_1)\) and \((t_2, y_2)\) belong to \(D \) and \(\lambda \) is in \([0, 1]\), the point \((1-\lambda)t_1 + \lambda t_2, \quad (1-\lambda)y_1 + \lambda y_2\) also belongs to \(D \).

Graphically, it is easy to see if a given set \(D \) is convex by checking if the line segment between points \((t_1, y_1)\) and \((t_2, y_2)\) contain completely in \(D \).

Example:

- a. and c. are convex and
- b. and d. are not.
3. A Sufficient Condition for Lipschitz Condition:

Theorem 5.3 Suppose $f(t,y)$ is defined on a convex set $D \subset \mathbb{R}^2$. If a constant $L > 0$ exists with

$$\left|\frac{\partial f}{\partial y}(t, y)\right| \leq L, \text{ for all } (t, y) \in D,$$

then f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L.

Example Let $f(t,y) = 1 + ty^2$ and $D = \{(t,y) | 0 \leq t \leq 2, \ -1 \leq y \leq 1\}$. Does f satisfy a Lipschitz condition on D? If so, find its Lipschitz constant.

The partial derivative of f with respect to y is $\frac{\partial f}{\partial y}(t, y) = 2ty$. Because

$$\left|\frac{\partial f}{\partial y}(t, y)\right| = |2ty| = 2|t||y| \leq 2(2)(1) = 4,$$

f satisfies a Lipschitz condition with Lipschitz constant 4.

Example Let $f(t,y) = 1 + t\sin(ty)$. Determine if f satisfies a Lipschitz condition in $D = \{(t,y) | 0 \leq t \leq 2, \ -\infty < y < \infty\}$.

Compute the partial derivative of f with respect to y:

$$\frac{\partial f}{\partial y}(t, y) = t\cos(ty) = t^2 \cos(ty).$$

Because

$$|\cos(ty)| \leq 1 \text{ and } |t| \leq 2,$$

$$\left|\frac{\partial f}{\partial y}(t, y)\right| = |t^2 \cos(ty)| = |t^2||\cos(ty)| \leq |t^2| \leq 4.$$

So, f satisfies a Lipschitz condition with a constant 4.

4. A Sufficient Condition for the Uniqueness of Solution of an Initial Value Problem:

Theorem 5.4 Suppose that $D = \{(t, y) | a \leq t \leq b, \ -\infty < y < \infty\}$ and that $f(t,y)$ is continuous on D. If f satisfies a Lipschitz condition on D in the variable y, then the initial-value problem

$$y'(t) = f(t, y), \ a \leq t \leq b, \ y(a) = \alpha$$

has a unique solution $y(t)$ for $a \leq t \leq b$.

Example Determine if the initial-value problem

$$y'(t) = \frac{2}{t}y + t^2e^t, \ 1 \leq t \leq 2, \ y(1) = 0$$

has a unique solution for $1 \leq t \leq 2$. If so, find the solution exactly or numerically.

Let $D = \{(t, y) | 1 \leq t \leq 2, \ -\infty < y < \infty\}$. Check if $f(t,y) = \frac{2}{t}y + t^2e^t$ satisfies a Lipschitz condition in D. Because

$$\left|\frac{\partial f}{\partial y}\right| = \left|\frac{2}{t}\right| \leq \frac{2}{1} = 2,$$

$f(t,y)$ satisfies a Lipschitz condition in D and therefore by Theorem 5.4 the initial-value problem has a unique solution.

Solve $\frac{dy}{dt} = \frac{2}{t}y + t^2e^t$:

2
(i) Solve the homogeneous equation \(\frac{dy}{dt} - \frac{2}{t}y = 0 \) by separation of variables:

\[
\frac{1}{y} \frac{dy}{dt} = \frac{2}{t}, \quad \ln|y| = 2 \ln|t| + C, \quad e^{\ln|y|} = e^{\ln|t|^2 + C}, \quad y_h = t^2 e^C = t^2 C.
\]

(ii) Find a particular solution of the homogeneous equation \(\frac{dy}{dt} - \frac{2}{t}y = t^2 e^t \):

Let \(y_p = (At^2 + Bt + C)e^t \). Then

\[
y'_p = (2At + B)e^t + (At^2 + Bt + C)e^t
\]

and

\[
(2At + B)e^t + (At^2 + Bt + C)e^t - \frac{2}{t} (At^2 + Bt + C)e^t = t^2 e^t
\]

\[
A = 1, \quad B = 0, \quad C - B = 0, \quad C = 0
\]

The solution is \(y_p = t^2 e^t \) and the general solution is: \(y(t) = y_h + y_p = t^2 C + t^2 e^t \).

(iii) Solve \(C \) by the initial value \(y(1) = 0 \): \(y(1) = C + e = 0, \quad C = -e \).

The general solution: \(y(t) = t^2 e^t - et^2 \).

Example Determine if the initial-value problem

\[
y'(t) = 1 + t \sin(yt), \quad 0 \leq t \leq 2, \quad y(0) = 0
\]

has a unique solution for \(0 \leq t \leq 2 \). If so, find the solution exactly or numerically.

Let \(D = \{ (t, y) \mid 0 \leq t \leq 2, \quad -\infty < y < \infty \} \). Clearly, \(f(t, y) = 1 + t \sin(yt) \) is continuous on \(D \).

From an earlier example, we know \(f(t, y) = 1 + t \sin(yt) \) satisfies a Lipschitz condition on \(D \) in the variable \(y \). By Theorem 5.4, we know the initial value problem has a unique solution.

Solve the initial value problem: \(\frac{dy}{dt} = 1 + t \sin(yt), \quad y(0) = 0 \). We cannot solve it exactly. The numerical solution:

\[
y' = 1 + \sin(yt), \quad 0 \leq t \leq 2, \quad y(0) = 0
\]

5. Well-posed Initial-Value Problems:

Definition 5.5 The initial-value problem:

\[
y'(t) = f(t, y), \quad a \leq t \leq b, \quad y(a) = \alpha
\]

is said to be a well-posed problem if

a. it has a unique solution \(y(t) \);
b. For any $\varepsilon > 0$, there exists a positive constant $k(\varepsilon)$, such that whenever $|\varepsilon_0| < \varepsilon$ and $\delta(t)$ is continuous with $|\delta(t)| < \varepsilon$ on $[a, b]$, the initial-value problem

$$z'(t) = f(t, z) + \delta(t), \ a \leq t \leq b, \ z(a) = \alpha + \varepsilon_0$$

has a unique solution $z(t)$ such that

$$|z(t) - y(t)| < \varepsilon \ k(\varepsilon).$$

Note that:

An initial-value problem is well-posed if a small change in the problem results only a small change in its solution. So, when small errors $\delta(t)$ and ε_0 are introduced in the differential equation and the initial value, respectively, the corresponding solution should be close to the solution of the original initial value problem.

Example Determine if the initial-value problem

$$y'(t) = y - t^2 + 1, \ 0 \leq t \leq 2, \ y(0) = 0.5$$

is a well-posed problem.

a. Solve the initial-value problem: $\frac{dy}{dt} = y - t^2 + 1$

(i) Solve the homogeneous equation $\frac{dy}{dt} - y = 0$ by separation of variables:

$$\frac{1}{y} \ dy = dt, \ \ln|y| = t + C, \ y_h = e^{t+C} = Ce^t.$$

(ii) Find a particular solution of the non-homogeneous equation: $\frac{dy}{dt} - y = -t^2 + 1$:

Let $y_p = At^2 + Bt + C$. Then $y'_p = 2At + B$, and $y''_p = 2A$.

$$2At + B - (At^2 + Bt + C) = -At^2 + (2A - B)t + (B - C) = -t^2 + 1.$$ So, $A = 1, \ 2A - B = 2 - B = 0, \ B = 2, \ B - C = 2 - C = 1, \ C = 1$. $y_p = t^2 + 2t + 1$.

(iii) Solve C : $y(0) = 1 + C = 0.5, \ C = -0.5$

The general solution: $y(t) = y_h + y_p = -0.5e^t + t^2 + 2t + 1$.

b. Let δ and ε_0 be some small constants. Add the errors $\delta(t) = \delta t$ and ε_0 to the differential equations and the initial-value, respectively:

$$\frac{dz}{dt} = z - t^2 + 1 + \delta t, \ 0 \leq t \leq 2, \ z(0) = 0.5 + \varepsilon_0$$

(i)-(ii) The general solution of this initial value problem is:

$$z(t) = Ce^t - t\delta + t^2 + (2 - \delta)t + 1 - \delta.$$ Solve $C : z(0) = C + 1 - \delta = 0.5 + \varepsilon_0$, $C = -0.5 + \varepsilon_0 + \delta$ and then

$$z(t) = e^{t(-0.5 + \varepsilon_0 + \delta)} + t^2 + (2 - \delta)t + 1 - \delta.$$ Let $\varepsilon > 0, |\delta| < \varepsilon$ and $|\varepsilon_0| < \varepsilon$. Check $|z(t) - y(t)|$:

$$|z(t) - y(t)| = |e^{t(-0.5 + \varepsilon_0 + \delta)} + t^2 + (2 - \delta)t + 1 - \delta - (-0.5e^t + t^2 + 2t + 1)|$$

$$= |(\varepsilon_0 + \delta)e^t - \delta t - \delta| = |\delta(e^t - t - 1) + \varepsilon_0e^t| < |\delta(e^t - t - 1)| + |\varepsilon_0e^t|$$

$$< \varepsilon(e^2 - t - 1) + \varepsilon e^2 < \varepsilon(2e^2 - 1)$$

So, by the definition of well-posed initial-value problems, this initial-value problem is well-posed with $k(\varepsilon) = 2e^2 - 1$.

4
6. A Sufficient Condition for a Well-posed Problem:

Theorem 5.6 Let $D = \{(t, y) : a \leq t \leq b, -\infty < y < \infty\}$. If f is continuous and satisfies a Lipschitz condition in the variable y on the set D, then the initial value problem

$$y'(t) = f(t, y), \quad a \leq t \leq b, \quad y(a) = \alpha.$$

is well-posed.

Example Consider again the initial-value problem: $y'(t) = y - t^2 + 1$, $0 \leq t \leq 2$, $y(0) = 0.5$.

Let $D = \{(t, y) : 0 \leq t \leq 2, -\infty < y < \infty\}$. Let $f(t, y) = y - t^2 + 1$. Because $\frac{\partial f}{\partial y} = 1$, $f(t, y)$ satisfies a Lipschitz condition. Hence, by Theorem 5.6, the initial-value problem is well-posed.

7. Picard’s Method:

Picard’s method is a method approximate the solution $y(t)$ of the initial-value problem:

$$y' = f(t, y), \quad a \leq t \leq b, \quad y(a) = \alpha$$

by a sequence of functions $\{y_k(t)\}$ where $y_k(t)$ are functions:

$$y_k(t) = \alpha + \int_a^t f(x, y_{k-1}(x))dx, \quad k = 1, 2, \ldots$$

That is, $y_0(t) = \alpha$,

$$y_1(t) = \alpha + \int_a^t f(x, \alpha)dx, \quad y_2(t) = \alpha + \int_a^t f(x, y_1(x))dx, \ldots$$

Derivation: For $k \geq 1$,

$$\int_a^t f(x, y(x))dx = \int_a^t y'(x)dx = y(x)|_a^t = y(t) - y(a) = y(t) - \alpha$$

implies

$$y_k(t) = \alpha + \int_a^t f(x, y_{k-1}(x))dx.$$

Example Find approximations $y_h(t)$ of the solution to the initial-value problem:

$$\frac{dy}{dt} = y + t, \quad y(0) = -1, \quad \text{by Picard’s method.}$$

For this problem, $f(t, y) = y + t$ and $y_0(t) = -1$. Then

$$y_1(t) = -1 + \int_0^t (-1 + x)dx = \frac{1}{2}t^2 - t - 1$$

$$y_2(t) = -1 + \int_0^t \left(\frac{1}{2}x^2 - x - 1 + x\right)dx = -1 + \int_0^t \left(\frac{1}{2}x^2 - 1\right)dx = \frac{1}{6}t^3 - t - 1$$

$$y_k(t) = \frac{1}{(k+1)!}t^{k+1} - t - 1.$$
Example Find approximations $y_1(t)$ and $y_2(t)$ of the solution to the initial-value problem:
\[
\frac{dy}{dt} = 1 + t \sin(yt), \quad y(0) = 0, \text{ by Picard’s method.}
\]
For this problem, $f(t,y) = 1 + t \sin(yt)$ and $y_0(t) = 0$. Then
\[
y_1(t) = 0 + \int_0^t (1 + x \sin(x(0))) \, dx = \int_0^t dx = t.
\]
\[
y_2(t) = 0 + \int_0^t (1 + x \sin(x^2)) \, dx = t + t^2 \sin t^2.
\]

Example Find approximations $y_h(t)$ of the solution to the initial-value problem:
\[
\frac{dy}{dt} = y^2 + t, \quad y(0) = 1, \text{ by Picard’s method.}
\]
\[
y_0(t) = 1, \quad y_1(t) = 1 + \int_0^t (1 + x) \, dx = t + \frac{1}{2} t^2 + 1
\]
\[
y_2(t) = 1 + \int_0^t \left(\left(x + \frac{1}{2} x^2 + 1 \right)^2 + x \right) \, dx = t + \frac{3}{2} t^2 + \frac{2}{3} t^3 + \frac{1}{4} t^4 + \frac{1}{20} t^5 + 1
\]
\[
y_3(t) = 1 + \int_0^t \left(\left(x + \frac{3}{2} x^2 + \frac{2}{3} x^3 + \frac{1}{4} x^4 + \frac{1}{20} x^5 + 1 \right)^2 + x \right) \, dx
\]
\[
= t + \frac{3}{2} t^2 + \frac{4}{3} t^3 + \frac{13}{12} t^4 + \frac{49}{60} t^5 + \frac{13}{30} t^6 + \frac{233}{1260} t^7 + \frac{29}{480} t^8 + \frac{31}{2160} t^9 + \frac{1}{400} t^{10} + \frac{1}{4400} t^{11} + 1
\]
black - y_0, blue - y_1, red - y_2, green - y_3