2.3 The Fixed-Point Algorithm

1. Mean Value Theorem:

Theorem **Rolle’s Theorem**: Suppose that \(f \) is continuous on \([a, b]\) and is differentiable on \((a, b)\). If \(f(a) = f(b) \), then there exists a number \(c \) in \((a, b)\) such that \(f'(c) = 0 \).

Theorem **Mean Value Theorem**: Suppose that \(f \) is continuous in \([a, b]\) and is differentiable on \((a, b)\). Then there exists a number \(c \) in \((a, b)\) such that

\[
 f'(c) = \frac{f(b) - f(a)}{b - a}
\]

Note that:

- **Rolle’s Theorem** is a special case of the **Mean Value Theorem**.

- By Rolle’s Theorem, we know if \(f'(x) \neq 0 \) for all \(x \) in \((a, b)\), then \(f(a) \neq f(b) \). On the other hand, the condition \(f(a) \neq f(b) \) alone is not enough for us to determine if there exists a number \(c \) in \((a, b)\) such that \(f'(c) = 0 \).

Graphically, Rolle’s Theorem and the Mean Value Theorem can be described as follows.

![Graphical illustration of Rolle’s Theorem and Mean Value Theorem](image)

- \(f(0) = f(2), \ f'(1) = 0 \)
- \(c \approx -1.4, \ c \approx 2.2 \)
- When \(b \) is close to \(a \) (\(|b - a|\) is small), \(f'(c) \approx \frac{f(b) - f(a)}{b - a} \) and \(f'(x) \approx \frac{f(b) - f(a)}{b - a} \) for \(x \in (a,b) \).

Example First show that the equation \(x - e^{-x} = 0 \) has a solution in \([0,1]\). Then Determine if the solution is unique.

Let \(f(x) = x - e^{-x} \). Since \(f(0)f(1) = (0 - 1)\left(1 - \frac{1}{e}\right) = -0.632 < 0 \), by the Intermediate Value Theorem there exists a number \(c \) in \((0, 1)\) such that \(f(c) = 0 \). Therefore, the equation \(x - e^{-x} = 0 \) has a solution in \([0, 1]\). Now let us check to see if \(f'(x) = 0 \) for \(x \) in \((0, 1)\),

\[
 f'(x) = 1 + e^{-x} > 0 \text{ for all } x.
\]

So, \(f'(x) \neq 0 \) for all \(x \) in \((0, 1)\) and therefore, \(f(x) = 0 \) only once and the solution is unique.
Example The graph of \(f(x) = x \cos(x + 0.2) \) for \(x \) in \([-2, 2]\) is given below. Find graphically all possible \(c \) in \((-2, 2)\) satisfying the conclusion given in the Mean Value Theorem. Approximate \(f'(c) \) for each \(c \).

Approximately, \(c_1 = -1.19 \) and \(c_2 = 0.89 \).

\[
\begin{align*}
 f'(c_1) & \approx \frac{f(-1) - f(-1.5)}{-1 + 1.5} = \frac{-0.697 - (-0.401)}{0.5} = -0.592 \\
 f'(c_2) & \approx \frac{f(1) - f(0.5)}{1 - 0.5} = \frac{0.362 - 0.382}{0.5} = -0.04
\end{align*}
\]

Comparison: \(f'(c_1) = -0.446, \quad f'(c_2) = -0.327 \)

2. Fixed-Point of a Function:

Definition A number \(p \) is said to be a fixed point of a function \(g(x) \) if \(g(p) = p \).

Graphically, a function has a fixed point at \(x = p \) if its graph \(y = g(x) \) intersects with the line \(y = x \) intersect at \(x = p \). For example, the following graphs show that \(y = e^{-x} \) and \(y = x \) intersect at a power where \(x \) is near 0.58.

\[
e^{-p} = p, \text{ when } p \approx 0.58
\]

Hence, \(f(x) = e^{-x} \) has a fixed point near 0.58. Some functions may have more than one fixed points and some functions may not have a fixed point. For example, the function in (i) has no fixed point because \(y = x^2 + 1 \) and \(y = x \) do not intersect; and the function in (ii) has infinitely many fixed points.
Algebraically, we solve the equation $g(x) = x$ (or $g(x) - x = 0$) to determine if a function has any fixed point over a given interval.

Example Find all fixed points of $g_1(x) = x^2 + 1$ and $g_2(x) = x + \cos(x)$ if they exist.

a. Set $g_1(x) = x$: $x^2 + 1 = x$, $x^2 - x + 1 = 0$. Using the quadratic formula:

$$x = \frac{1 \pm \sqrt{1-4(1)}}{2} = \frac{1 \pm \sqrt{-3}}{2}$$

no real solution.

So, $g_1(x)$ has no fixed point for $-\infty < x < \infty$.

b. Set $g_2(x) = x$: $x + \cos(x) = x$, $\cos(x) = 0$, $x = \pm \frac{2n-1}{2}\pi$, $n = 1, 2, 3, \ldots$

So, $g_2(x)$ has infinitely many fixed points for $-\infty < x < \infty$.

3. Existence and Uniqueness of a Fixed Point

Theorem Existence and Uniqueness: Let g be continuous on $[a, b]$.

i. If $a \leq g(x) \leq b$ for all x in $[a, b]$, then $g(x)$ has a fixed point p in $[a, b]$.

ii. If, in addition, $g'(x)$ exists on (a, b) and there exists a constant $0 < K < 1$ such that $|g'(x)| \leq K$ for all x in (a, b),

then p is unique.

Note that:

a. Both conditions: $a \leq g(x) \leq b$ for all x in $[a, b]$ and $|g'(x)| \leq K$ for all x in (a, b) are sufficient conditions. So, in the case where the condition in i. does not hold, it is possible that $g(x)$ has a fixed point; and in the case where the condition in ii. is not satisfied, it is also possible the fixed point of $g(x)$ is unique.

b. Because $g'(x)$ is the slope of the tangent line to the curve $y = g(x)$ at x, $|g'(x)| \leq K < 1$ means that the graph of $g(x)$ does not grow as faster than $y = x$ and not slower than $y = -x$.

Proof of the existence and uniqueness:

i. If $g(a) = a$ or $g(b) = b$, then $p = a$ or $p = b$ and g has a fixed point. Now let $g(a) > a$ and $g(b) < b$, and let $h(x) = g(x) - x$. Since $g(x)$ is continuous on $[a, b]$, $h(x)$ is continuous on $[a, b]$. Observe that $h(a) = g(a) - a > 0$ and $h(b) = g(b) - b < 0$. So, by the Intermediate Value Theorem, we know there exists a number c in (a, b) such that $h(c) = 0$, that is
\(g(c) - c = 0 \) or \(g(c) = c \).

So, \(c \) is a fixed point of \(g \) in \([a, b]\).

ii. Now let also \(|g'(x)| \leq K \) for all \(x \) in \((a, b)\) where \(0 < K < 1 \). Suppose that \(g(x) \) has two fixed points, say \(p < q \) in \([a, b]\). Then by the Mean Value Theorem, we know these exists a point \(c \) in \((q, p)\) such that

\[
g'(c) = \frac{g(p) - g(q)}{p - q}.
\]

Since \(g(p) = p \) and \(g(q) = q \), \(\frac{g(p) - g(q)}{p - q} = \frac{p - q}{p - q} = 1 \). So, \(g'(c) = 1 \), this contradicts the given condition \(|g'(x)| < 1 \) for all \(x \) in \((a, b)\). So, \(g \) cannot have two fixed points in \((a, b)\).

Example Let \(g(x) = \frac{1}{3}(x^2 - 1) \) for \(x \) in \([-1, 1]\). Determine if \(g \) has a fixed point in \([-1, 1]\). If so, determine if the fixed point is unique.

Check conditions given in the theorem for the existence and uniqueness:

i. Observe that \(g_{\text{min}} = g(0) = -\frac{1}{3} \geq -1 \) and \(g_{\text{max}} = g(1) = g(-1) = 0 \leq 1 \). Since \(-1 \leq g(x) \leq 1 \) for all \(x \) in \([-1, 1]\), \(g \) has a fixed point in \([-1, 1]\).

ii. Compute \(g'(x) = \frac{2}{3}x \). Since \(|g'(x)| = \frac{2}{3}|x| \leq \frac{2}{3} < 1 \), \(g \) has a unique fixed point in \([-1, 1]\).

For \(g(x) \), we can solve its fixed point \(p \) algebraically.

\[
x = \frac{1}{3}(x^2 - 1) = x^2 - 3x - 1 = 0 \Rightarrow x = \frac{3 \pm \sqrt{9 - 4(-1)}}{2} = \frac{3 \pm \sqrt{13}}{2}
\]

Since \(\frac{3 + \sqrt{13}}{2} > 1 \), \(p = \frac{3 - \sqrt{13}}{2} = -0.302776 \) is a unique fixed point in \([-1, 1]\).

Check the graph of \(g(x) \):

\[
- y = \frac{1}{3}(x^2 - 1), \quad \ldots \quad y = x, \quad y = -
\]

Example Let \(g(x) = 3^{-x} \) for \(x \) in \([0, 1]\). Determine if \(g \) has a fixed point in \([0, 1]\). If so, determine if the fixed point is unique.

Check conditions given in the theorem for the existence and uniqueness:

i. Observe that \(g_{\text{min}} = g(1) = 3^{-1} > 0 \), and \(g_{\text{max}} = g(0) = 1 \). Since \(0 \leq g(x) \leq 1 \), \(g(x) \) has a fixed point in \([0, 1]\).

ii. Compute \(g'(x) = -3^{-x}\ln 3 \). Since \(|g'(0)| = \ln 3 > 1 \), there is no conclusion
about the uniqueness.
From the graph of g below, we can see that g has a unique fixed point $p \approx 0.55$ in $[-1, 1]$. But we cannot solve p algebraically. How can solve a fixed point numerically?

$y = 3^{-x}, x$ in $[0, 1]$

4. The Fixed-Point Algorithm:
The Fixed-Point Algorithm is an algorithm that finds the fixed-point of a function over an interval assuming the fixed point is unique in this interval.

Algorithm Fixed-Point Algorithm: Given $g(x)$, and $[a, b]$, choose p_0 in $[a, b]$ and compute p_1, p_2, \ldots, as follows:

$$p_n = g(p_{n-1}) \quad \text{for} \quad n = 1, 2, \ldots$$

Implement the algorithm in a programming language which does the following:

1. Input $g(x)$, interval $[a, b]$, p_0 in $[a, b]$, ϵ and K_{max}, and compute $p_n = g(p_{n-1})$ for $n = 1, 2, \ldots$. The program terminates if
 i. $|p_n - p_{n-1}| < \epsilon$ and then $p \approx p_n$; or
 ii. $p_n > b$ or $p_n < a$, and the program fails; or
 iii. $n = K_{\text{max}}$.

The MatLab program fixpt.m implements the Fixed-Point Algorithm to find p_n with input

1. the function gfun for $g(x)$;
2. an initial approximation p_0 to the fixed-point;
3. an accuracy requirement ϵ; and
4. the maximum number for iterations K_{max}.

The following two examples show graphically how the Fixed-Point Algorithm works.
Fixed Point Iterations: \(g(x) = (x-0.5)^2, \ p_0 = 2 \)

\[0 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \]

Clearly, the Fixed-Point Algorithm finds the fixed point \(p \) in (1) and diverges in (2).

5. Convergence and the Rate of Convergence of the Fixed-Point Algorithm:

Questions: Assume that \(g \) has a unique fixed point \(p \) in \([a, b] \) and \(p_0 \) is in \([a, b] \). Let

\[p_n = g(p_{n-1}), \ n = 1, 2, \ldots. \]

a. Under what condition(s), does \(p_n \) converge to \(p \)?

b. If \(\lim_{n \to \infty} p_n = p \), what is the rate of converge?

Fixed-Point Theorem:

Theorem Fixed-Point Theorem: Let \(g \) be continuous on \([a, b] \) and \(a \leq g(x) \leq b \). Suppose that \(g'(x) \) exists for all \(x \) in \((a, b) \), and

\[|g'(x)| \leq K \text{ for all } x \text{ in } (a, b) \text{ where } 0 < K < 1. \]

Then \(\lim_{n \to \infty} p_n = p \) for any \(p_0 \) in \([a, b] \), and

\[|p_n - p| \leq K^n \max \{ p_0 - a, b - p_0 \} \]

\[|p_n - p| \leq \frac{K^n}{1 - K} |p_1 - p_0|, \text{ for all } n = 1, 2, \ldots. \]

Proof: Let \(p_0 \) be in \([a, b] \) and \(\{p_n\} \) be generated by the Fixed-Point Algorithm. Observe that

\[|p_n - p| = |g(p_{n-1}) - g(p)|. \]

By the Mean Value Theorem, we know there exists a number \(c \) in \((a, b) \) such that

\[\frac{g(p_{n-1}) - g(p)}{p_{n-1} - p} = g'(c) \text{ or } g(p_{n-1}) - g(p) = g'(c)(p_{n-1} - p). \]

Since \(|g'(x)| < 1 \) for all \(x \) in \((a, b) \),
\[|p_n - p| = |g(p_{n-1}) - g(p)| = |g'(c)(p_{n-1} - p)| = |g'(c)| |p_{n-1} - p| \leq K |p_{n-1} - p| \]
\[\leq K(K |p_{n-2} - p|) = K^2 |p_{n-2} - p| \ldots \]
\[\leq K^n |p_0 - p| \]
\[0 < \lim_{n \to \infty} |p_n - p| \leq \lim_{n \to \infty} K^n |p_0 - p| \Rightarrow 0. \]

Therefore, \(\lim_{n \to \infty} p_n = p. \)

Since \(|p_0 - p| \leq |p_0 - a| \) or \(|p_0 - p| \leq |b - p_0|, \)
\[|p_{n+1} - p_n| = |g(p_n) - g(p_{n-1})| \leq K |p_n - p_{n-1}| = K |g(p_{n-1}) - g(p_{n-2})| \]
\[\leq K^2 |g(p_{n-2}) - g(p_{n-3})| \leq \ldots \]
\[\leq K^n |p_1 - p_0| \]

So for any \(m > n \geq 1, \)
\[|p_m - p_n| = |(p_m - p_{m-1}) + (p_{m-1} - p_{m-2}) + \ldots + (p_{n+1} - p_n)| \]
\[\leq |p_m - p_{m-1}| + |p_{m-1} - p_{m-2}| + \ldots + |p_{n+1} - p_n| \]
\[\leq K^{m-1} |p_1 - p_0| + K^{m-2} |p_1 - p_0| + \ldots + K^n |p_1 - p_0| \]
\[= K^n (K^{m-n-1} + K^{m-n-2} + \ldots + K + 1) |p_1 - p_0| \]
\[= K^n \left(\frac{1 - K^{m-n}}{1 - K} \right) |p_1 - p_0| \]

Since \(\lim_{m \to \infty} p_m = p, \)
\[|p - p_n| = \lim_{m \to \infty} |p_m - p_n| \leq \lim_{m \to \infty} K^n \left(\frac{1 - K^{m-n}}{1 - K} \right) |p_1 - p_0| = \frac{K^n}{1 - K} |p_1 - p_0| \]

Note that:

a. **Rate of convergence:** \(|p_n - p| \leq \frac{K^n}{1 - K} |p_1 - p_0|, \) for all \(n = 1, 2, \ldots \) implies that
\[\frac{|p_n - p|}{K^n} \leq \frac{1}{1 - K} |p_1 - p_0| = \frac{1}{1 - K} |g(p_0) - p_0|. \]

So \(p_n \) converges to \(p \) with the rate of convergence of \(O(K^n) \), i.e.,
\[p_n = p + O(K^n). \]

b. **Order of convergence:** From \(|p_n - p| = |g'(c_{n-1})||p_{n-1} - p| \leq K |p_{n-1} - p|, \) we have
\[\frac{|p_n - p|}{|p_{n-1} - p|} \leq K. \]

Hence, \(\{p_n\} \) converges to \(p \) linearly (\(\alpha = 1 \)) with an asymptote error constant \(K. \)

c. **The smallest possible number of iterations:** For a given \(\varepsilon, \) we can estimate the number \(N \) of iterations needed to approximate \(p \) by \(p_N. \) That is, find \(N \) such that
\[\frac{K^N}{1 - K} |p_1 - p_0| < \frac{K^N}{1 - K} |b - a| < \varepsilon \Rightarrow K^N < \varepsilon \left(\frac{1 - K}{b - a} \right) \Rightarrow N \ln(K) < \ln\left(\varepsilon \left(\frac{1 - K}{b - a} \right) \right) \]

Since \(0 < K < 1, \) \(\ln(K) < 0. \) So, \(N > \frac{\ln \varepsilon + \ln \left(\frac{1 - K}{b - a} \right)}{\ln(K)}. \)
Example Determine whether or not the function has a fixed point in the given interval. If so, determine if the Fixed-point Algorithm will converge to the fixed point. In the case when it converges, estimate the number of iterations possibly needed to approximate the fixed point within 10^{-5}.

\[(1) \quad g(x) = \frac{1}{3} (2 - e^x + x^2), \quad [0, 1] \quad (2) \quad g(x) = \frac{1}{2} (10 - x^3)^{1/2}, \quad [0, 2] \]

(1) Check the range of g : From the graph of $g(x)$ on $[0, 1]$, we have $0 \leq g(x) \leq 1$.

\[(1) \quad y = g(x) = \frac{1}{3} (2 - e^x + x^2) \quad (2) \quad y = |g'(x)| = \left| \frac{1}{3} (-e^x + 2x) \right| \]

So, $g(x) = \frac{1}{3} (2 - e^x + x^2)$ has a fixed point in $[0, 1]$.

Check the maximum value of $|g'(x)|$: $g'(x) = \frac{1}{3} (-e^x + 2x)$. From the graph of $|g'(x)|$,

\[|g'(x)| \leq \left| g'(0) \right| = \left| \frac{1}{3} (-1) \right| = \frac{1}{3} = K < 1 \text{ for all } x \text{ in } [0, 1]. \]

So, $g(x)$ has a unique fixed-point in $[0, 1]$ and the sequence $\{p_n\}$ generated by the Fixed-Point Algorithm converges to p.

Estimate the number N of iterations:

\[N > \frac{\ln 10^{-5} + \ln \left(1 - \frac{1}{3} \right)}{\ln \left(\frac{1}{3} \right)} = 10.8486, \quad \text{let } N = 11. \]

Use the Fixed-Point Algorithm to solve the fixed point in $[0, 1]$ and $p \approx p_n$ where $|p_n - p_{n-1}| < 10^{-5}$.

Using MatLab program fixpt.m, we have the following.

\[
\begin{align*}
&>> \text{gfun= @(x) } \frac{1}{3}*(2-\exp(x)+x.^2); \\
&>> \text{fixpt} \\
&\text{input initial point } p0 = 0 \\
&\text{input the tolerance for stopping criterion, ex:.0001,10^(-8) 10^(-5) } \\
&\text{input the maximum number of iterations 100} \\
&\text{Algorithm converges with number of iterations =} \\
&\text{ans = 9} \\
&\text{fixed point } p = \\
&0.257531806267540 \\
&\text{Now we check the values of } g(x) \text{ at } \{p_i\}: \\
&>> [p \ gfun(p)] \\
&0 \quad 0.333333333333333 \\
&0.333333333333333 \quad 0.238499562008341
\end{align*}
\]
As you see, \(g(p_9) \approx p_9 \).

(2) Check the range of \(g(x) \): Observe that

\[
g_{\text{min}} = g(2) = \frac{1}{2}\sqrt{10 - 8} = \frac{\sqrt{2}}{2} \geq 0, \quad g_{\text{max}} = g(0) = \frac{1}{2}\sqrt{10} \leq 2.
\]

So, \(0 \leq g(x) \leq 2 \) for all \(x \) in \([0, 2]\). Hence, \(g(x) \) has a fixed point in \([0, 2]\).

Check the maximum value of \(|g'(x)| \):

\[
g'(x) = \frac{1}{2} \frac{-3x^2}{\sqrt{10 - x^3}}. \quad |g'(x)| = \frac{3x^2}{2\sqrt{10 - x^3}}
\]

From the graph of \(|g'(x)| \),

\[
y = |g'(x)| = \left| \frac{1}{2} \frac{-3x^2}{\sqrt{10 - x^3}} \right|
\]

\(|g'(x)| > 1 \) for some \(x \) in \([0, 2]\). So we cannot conclude the sequence \(\{p_n\} \) generated by the Fixed-Point Algorithm converges to \(p \).

Using MatLab program fixpt.m, we have the following.

```
>> gfun=@(x) 1/2*sqrt(10-x.^3);
>> fixpt
input initial point p0 = 0
input the tolerance for stopping criterion, ex:.0001, 10^(-8) 10^(-5)
input the maximum number of iterations 100
Algorithm converges with number of iterations = 18
fixed point p = 1.365227242758129
Check some values of \( p_i \) and \( g(p_i) \):
>> [p(13:18,1) gfun(p(13:18,1))]
1.365076127110441 1.365308786086649
1.365308786086649 1.365189681935091
1.365189681935091 1.365250660802594
```
6. Fixed-Point Algorithm for Solving The Equation: f(x) = 0

Let \(x^* \) be a solution of the equation \(f(x) = 0 \). To solve \(x^* \) using the Fixed-Point Algorithm, a function \(g \) needs to be defined first such that \(x^* \) is a fixed point of \(g \), that is, \(x^* = g(x^*) \).

Example Consider solving \(x^3 + x + 1 = 0 \). Find an interval \([a, b]\) on which the equation has a solution. Find a function \(g \) such that the fixed point of \(g \) is the solution of the equation: \(f(x) = 0 \). Determine if the sequence \(\{p_n\} \) generated by the Fixed-Point Algorithm with the function \(g \).

Consider \([a, b] = [-1, 0]\). Since \(f(-1)f(0) = (-1)(1) < 0 \), the equation has a solution in \([-1, 0]\).

(1) A naive choice of \(g \) : since \(x = -1 - x^3 \), we can let

\[
g(x) = -1 - x^3.
\]

Check the range of \(g \) : \(g_{\min} = g(0) = -1 \) and \(g_{\max} = g(-1) = 0 \), so, \(-1 \leq g(x) \leq 0 \) and \(g \) has a fixed point in \([-1, 0]\).

Check the maximum value of \(|g'(x)| \) : \(g'(x) = -3x^2 \), \(|g'(x)| = 3x^2 > 1 \) for some \(x \) in \([-1, 0]\).

So, it is not certain by the Fixed-Point Theorem if \(\{p_n\} \) converges to \(p \).

Observe that \(\{p_n\}_{n=0} = \{0, -1, 0, -1, \ldots\} \).

(2) Rewrite the equation \(x^3 + x + 1 = 0 \) as \(x^3 = -1 - x \), \(x = -\sqrt[3]{x + 1} \). Let

\[
g(x) = -\sqrt[3]{x + 1}.
\]

Check the range of \(g \) : \(g_{\min} = g(0) = -1 \), \(g_{\max} = g(-1) = 0 \), so, \(-1 \leq g(x) \leq 0 \) and \(g \) has a fixed point in \([-1, 0]\).

Check the maximum value of \(|g'(x)| \) : \(g'(x) = -\frac{1}{3} \frac{1}{\sqrt[3]{(x + 1)^2}} \). Since \(g'(x) \) is not defined at \(x = -1 \), \(g'(x) \) is unbounded. So, it is not certain if \(\{p_n\} \) converges to \(p \).

Observe that \(\{p_n\}_{n=0} = \{0, -1, 0, -1, \ldots\} \).

(3) Rewrite the equation \(x^3 + x + 1 = 0 \) as \(x^3 + x = -1 \) and then \(x(x^2 + 1) = -1 \) or \(x = \frac{-1}{x^2 + 1} \). Let

\[
g(x) = \frac{-1}{x^2 + 1}.
\]

Check the range of \(g \) : \(g_{\min} = g(0) = -1 \), and \(g_{\max} = g(-1) = -\frac{1}{2} \), so, \(-1 \leq g(x) \leq 0 \) and \(g \) has a fixed point in \([-1, 0]\).
Check the maximum value of $|g'(x)|$:

\[
\begin{align*}
g'(x) &= -\frac{2x}{(x^2 + 1)^2}, \\
|g'(x)| &= \frac{2|x|}{(x^2 + 1)^2} \quad \text{for } x < 0 \\
&= \frac{-2x}{(x^2 + 1)^2}.
\end{align*}
\]

From the graph of $|g'(x)|$ above, we see $|g'(x)| \leq 0.7 = K < 1$. So, p is unique in $[-1, 0]$ and $\{p_n\}$ converges to p. Algebraically, let $h(x) = |g'(x)|$. $h'(x) = \frac{-2(1 - 3x^2)}{(x^2 + 1)^3} = 0$, $x = -\frac{1}{\sqrt{3}}$ for $x < 0$.

$h(x)$ reaches its maximum at $x = -\frac{1}{\sqrt{3}}$ and hence, $K = \frac{-2\left(-\frac{1}{\sqrt{3}}\right)}{\left(\left(-\frac{1}{\sqrt{3}}\right)^2 + 1\right)^2} = 0.64951905 < 0.65$

Estimate the number N of iterations needed:

\[
N > \frac{\ln 10^{-5} + \ln(1 - 0.7)}{\ln(0.7)} = 35.654, \text{ let } N = 36.
\]

\[
N > \frac{\ln 10^{-5} + \ln(1 - 0.65)}{\ln(0.65)} = 29.162595, \text{ let } N = 30.
\]

Use the Fixed-Point Algorithm to solve the fixed point in $[0, 1]$ and $p \approx p_n$ where $|p_n - p_{n-1}| < 10^{-5}$.

$n = 27$ and $p_{27} = -0.68232442571947$.

Example Show that each of the following functions has a fixed point at p precisely when $f(p) = 0$, where $f(x) = x^4 + 2x^2 - x - 3$.

\[
g(x) = (3 + x - 2x^2)^{1/4} \quad \text{and} \quad g(x) = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1}
\]

(1) Set $x^4 + 2x^2 - x - 3 = 0$. Then

\[
x^4 = 3 + x - 2x^2 \Rightarrow x = (3 + x - 2x^2)^{1/4}.
\]

(2) Check if $x = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1}$, then

\[
\begin{align*}
x - \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1} &= \frac{4x^4 + 4x^2 - x - (3x^4 + 2x^2 + 3)}{4x^3 + 4x - 1} \\
&= \frac{x^4 + 2x^2 - x - 3}{4x^3 + 4x - 1} = 0.
\end{align*}
\]

So, $x^4 + 2x^2 - x - 3 = 0$.

Example The following four methods are proposed to compute $7^{1/5}$. Rank them in order, based on their apparent speed of convergence, assuming $p_0 = 1$.

\[
\begin{array}{c|c|c|c|c}
\text{Method} & \text{Convergence} & \text{Rate of Convergence} & \text{Approximation} \\
\hline
\text{Newton-Raphson} & \text{Quadratic} & \text{Newton-Raphson} & 7^{1/5} \\
\text{Secant Method} & \text{Linear} & \text{Secant Method} & 7^{1/5} \\
\text{Bisection Method} & \text{Linear} & \text{Bisection Method} & 7^{1/5} \\
\text{Fixed-Point Method} & \text{Linear} & \text{Fixed-Point Method} & 7^{1/5}
\end{array}
\]
The function g for each iteration is:

1. $g_1(x) = \left(1 + \frac{7-x^3}{x^2}\right)^{1/2} = \left(1 + \frac{7}{x^2} - x\right)^{1/2}$
2. $g_2(x) = x - \frac{x^5}{x^2} = x - x^3 + \frac{7}{x^2}$
3. $g_3(x) = x - \frac{x^5 - 7}{5x^4} = x - \frac{1}{5}x + \frac{7}{5x^4} = \frac{4}{5}x + \frac{7}{5x^4}$
4. $g_4(x) = x - \frac{x^5}{12} = x - \frac{x^5}{12} + \frac{7}{12}$

All four functions have a fixed point on $[1, 2]$. Compute $g'(x)$:

(i) $g_1'(x) = \frac{1}{2} \left(1 + \frac{7}{x^2} - x\right)^{-1/2} \left(-\frac{14}{x^3} - 1\right)$
(ii) $g_2'(x) = 1 - 3x^2 - \frac{14}{x^3}$
(iii) $g_3'(x) = \frac{4}{5} - \frac{28}{5x^5}$
(iv) $g_4'(x) = 1 - \frac{5}{12}x^4$

Check the value of $|g'(x)|$ at $p = 7^{1/5}$:

$|g_1'(p)| = \left|\frac{1}{2} \left(1 + \frac{7}{p^2} - p\right)^{-1/2} \left(-\frac{14}{p^3} - 1\right)\right| = 1.61828 > 1$

$|g_2'(p)| = \left|1 - 3p^2 - \frac{14}{p^3}\right| = 9.88953 > 1$

$|g_3'(p)| = \left|\frac{4}{5} - \frac{28}{5p^5}\right| = 0 < 1$

$|g_4'(p)| = \left|1 - \frac{5}{12}p^4\right| = 0.976365 < 1$
So, the sequences \(\{p_n\} \) generated by the Fixed-Point Algorithm using \(g_1 \) and \(g_2 \) do not converge. The sequences \(\{p_n\} \) generated by the Fixed-Point Algorithm using \(g_3 \) and \(g_4 \) converge and the third sequence converges faster than the the 4th one. The testing results show that

using \(g_3(x) \), \(7^{1/5} \approx p_7 = 1.47577316159456 \)

using \(g_4(x) \), \(7^{1/5} \approx p_{355} = 1.47577807080213 \)

Example
Show that if \(A \) is any positive number, then the sequence defined by

\[
x_n = \frac{1}{2} x_{n-1} + \frac{A}{2x_{n-1}}, \text{ for } n \geq 1,
\]

converges to \(\sqrt{A} \) whenever \(x_0 > 0 \).

Let \(\lim_{n \to \infty} x_n = x \). Then

\[
\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(\frac{1}{2} x_{n-1} + \frac{A}{2x_{n-1}} \right) \iff x = \frac{1}{2} x + \frac{A}{2x} \iff \frac{1}{2} x = \frac{A}{2x} \iff x^2 = A \iff x = \sqrt{A}.
\]

Example
Let \(\{p_n\} \) be generated by the **Fixed-point Algorithm** with the function \(g(x) \) and let \(p \) be the fixed point of \(g(x) \) such that \(\lim_{n \to \infty} p_n = p \). Determine the orders of convergence and the asymptotic error constants of the sequence \(\{p_n\} \) in the cases where

(1) \(g'(p) \neq 0 \); and

(2) \(g'(p) = 0 \) but \(g''(p) \neq 0 \).

(1) Assume that \(g'(p) \neq 0 \). By the Mean Value Theorem, we have

\[
| p_{n+1} - p | = | g(p_n) - g(p) | = | g'(c_n)(p_n - p) | = | g'(c_n) || p_n - p |
\]

where \(c_n \) is between \(p_n \) and \(p \).

\[
\lim_{n \to \infty} | p_{n+1} - p | = \lim_{n \to \infty} | g'(c_n) | = | g'(p) |.
\]

So, the order of convergence is 1 and the asymptotic error constant \(|g'(p)| \).

(2) Assume that \(g'(p) = 0 \) but \(g''(p) \neq 0 \). By the Taylor Theorem, we have for \(x \neq p \),

\[
g(x) = g(p) + \frac{g'(p)}{1!} (x - p) + \frac{g''(\xi(x))}{2!} (x - p)^2, \text{ where } \xi(x) \text{ is between } x \text{ and } p.
\]

Then

\[
g(p_n) = g(p) + \frac{g'(p)}{1!} (p_n - p) + \frac{g''(\xi(x_n))}{2!} (p_n - p)^2 = g(p) + \frac{g''(\xi(p_n))}{2!} (p_n - p)^2
\]

\[
| p_{n+1} - p | = | g(p_n) - g(p) | = | g(p) + \frac{g''(\xi(p_n))}{2!} (p_n - p)^2 - g(p) | = \frac{1}{2} | g''(\xi(p_n)) || p_n - p |^2
\]

\[
\frac{|p_{n+1} - p|}{|p_n - p|^2} = \frac{1}{2} | g''(\xi(p_n)) |, \quad \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} = \frac{1}{2} | g''(p) |
\]

So, the order of convergence is 2 and the asymptotic error constant \(\frac{1}{2} |g''(p)| \).
Exercises:

1. The graph of $f(x)$ for $-3 \leq x \leq 5$ is given at the left.
 Find graphically all possible c in $(-3, 5)$ that satisfies the conclusion given by the Mean Value Theorem.

2. The graph of g for x in $[0, 1]$ is given at the left. Let $p_0 = 0$. Compute graphically p_1, p_2, p_3 generated by the Fixed-point Algorithm.

3. Use the Fixed-Point Algorithm to approximate the solution of the equation $x^3 - x - 1 = 0$ on $[1, 2]$ within 10^{-5} with $p_0 = 1$. Give $g(x)$ first and explain how you choose $g(x)$.

4. Consider solving the equation $\cos(x) - x = 0$ for x in $[0, \frac{\pi}{2}]$.
 a. Show that the equation $\cos(x) - x = 0$ has a unique solution in $[0, \frac{\pi}{2}]$ by two steps:
 (i) show the equation has a solution in $[0, \frac{\pi}{2}]$ by the Intermediate Value Theorem;
 (ii) show the solution is unique by Rolle’s Theorem.
 b. Approximate the solution of the equation within 10^{-8} by the following methods:
 (i) the Bisection Method (bisect.m);
 (ii) the Newton Method (newton.m) with $p_0 = 0$;
 (iii) the Fixed Point Method (fixpt.m) with $g(x) = \cos(x)$ and $p_0 = 0$.
 Report the number of iterations for each method. Rank the methods based on numbers of iterations.
 c. Estimate (the best you can) the asymptotic error constant λ for the Newton Method. Does λ match with the performance of the Newton Method?
5. Consider the function \(g(x) = 1 + x - \frac{1}{8}x^3 \).
 a. Show that \(g(x) \) has a unique fixed point on the real line.
 b. Can we show \(g(x) \) has a unique fixed point using the theorem for the existence and uniqueness? Explain.
 c. What is the order of convergence if we use the Fixed-Point Algorithm to find this fixed-point? Show your work in detail.

6. Consider the function \(g(x) = e^{-x^2} \).
 a. Show that \(g \) has a unique fixed point on the interval \([0, 1]\).
 b. Approximate the fixed point of \(g(x) \) within \(10^{-8} \) using the Fixed-Point Algorithm.
 c. Estimate (algebraically) the number of iterations to approximate the fixed point within \(10^{-8} \) (using the formula given in Notes c. after the Fixed-Point Theorem).

7. The following four methods are proposed to compute \(\sqrt[3]{21} \). Rank them in order, based on their apparent speed of convergence, assuming \(p_0 = 1 \).

 (1) \(p_n = \frac{20p_{n-1} + \frac{21}{p_{n-1}^2}}{21} \)

 (2) \(p_n = p_{n-1} - \frac{p_{n-1}^3 - 21}{3p_{n-1}^2} \)

 (3) \(p_n = p_{n-1} - \frac{p_{n-1}^4 - 21p_{n-1}}{p_{n-1}^2 - 21} \)

 (4) \(p_n = \sqrt[3]{\frac{21}{p_{n-1}}} \)